

© Secure Code Alliance, All Rights Reserved 2023
Contact support@securecodealliance.com for requests to republish SCA-BoK content.

Secure Code Alliance Body of Knowledge
(SCA-BoK)

Developing Security & Privacy by Design

Version 2023.1

mailto:support@securecodealliance.com

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 2 of 41

Table of Contents
EXECUTIVE SUMMARY .. 5
ABOUT THE SECURE CODE ALLIANCE (SCA) ... 6

SCA BODY OF KNOWLEDGE (SCA-BOK) ... 6
SECURE SOFTWARE DEVELOPMENT FRAMEWORK (SSDF) ... 6
MISSION .. 7
VISION .. 7
STRATEGY .. 7
DEVELOPING SECURITY & PRIVACY BY DESIGN (DSPD) CONFORMITY ASSESSMENT .. 8

Recall .. 8
Application .. 8
Analysis ... 9

COMPETENCY EXPECTATIONS.. 9
Practitioner Role - Certified SCA Practitioner (CSCAP) .. 9
Architect Role - Certified SCA Architect (CSCAA) ... 10

PRACTITIONER-LEVEL: UNDERSTANDING THE ROLE OF SECURITY MECHANISMS ... 11
ADEQUATE SECURITY .. 11
SECURE SYSTEMS ... 12

Stakeholder Security Requirements .. 12
System Security Requirements .. 12

SYSTEM OF SYSTEMS MINDSET ... 12
SECDEVOPS ... 13

Avoiding Siloes .. 13
GRC Frames SecDevOps Controls .. 13
Compliant vs Secure .. 14

PRACTITIONER-LEVEL: SECURE SOFTWARE DEVELOPMENT PRACTICES (SSDP) ... 15
DOMAIN 1: PREPARE THE ORGANIZATION (PO) ... 15

Practice PO.1: Define Security Requirements for Software Development ... 15
Practice PO.2: Implement Roles and Responsibilities.. 15
Practice PO.3: Implement Supporting Toolchains ... 16
Practice PO.4: Define and Use Criteria for Software Security Checks ... 16
Practice PO.5: Implement and Maintain Secure Environments for Software Development.. 16

DOMAIN 2: PROTECT SOFTWARE (PS).. 17
Practice PS.1: Protect All Forms of Code from Unauthorized Access and Tampering ... 17
Practice PS.2: Provide a Mechanism for Verifying Software Release Integrity ... 17
Practice PS.3: Archive and Protect Each Software Release ... 17

DOMAIN 3: PRODUCE WELL-SECURED SOFTWARE (PW) .. 17
Practice PW.1: Design Software to Meet Security Requirements and Mitigate Security Risks ... 17
Practice PW.2: Review the Software Design to Verify Compliance with Security Requirements and Risk Information 18
Practice PW.3: Verify Third-Party Software Complies with Security Requirements .. 18
Practice PW.4: Reuse Existing, Well-Secured Software When Feasible Instead of Duplicating Functionality ... 18
Practice PW.5: Create Source Code by Adhering to Secure Coding Practices.. 19
Practice PW.6: Configure the Compilation, Interpreter and Build Processes to Improve Executable Security .. 19
Practice PW.7: Review and/or Analyze Human-Readable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements19
Practice PW.8: Test Executable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements 20
Practice PW.9: Configure Software to Have Secure Settings by Default ... 20

DOMAIN 4: RESPOND TO VULNERABILITIES (RV) .. 20
Practice RV.1: Identify and Confirm Vulnerabilities on an Ongoing Basis ... 20
Practice RV.2: Assess, Prioritize and Remediate Vulnerabilities ... 21
Practice RV.3: Analyze Vulnerabilities to Identify Their Root Causes .. 21

PRACTITIONER-LEVEL: TRUSTWORTHY SECURE DESIGN PRINCIPLES & CONCEPTS .. 22
APPLICATION OF DESIGN PRINCIPLES TO COMMERCIAL PRODUCTS .. 22
TRUSTWORTHINESS DESIGN PRINCIPLES .. 22

TSD-1: Anomaly Detection .. 23
TSD-2: Clear Abstractions ... 23
TSD-3: Commensurate Protection ... 23
TSD-4: Commensurate Response .. 23
TSD-5: Commensurate Rigor ... 23
TSD-6: Commensurate Trustworthiness .. 23

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 3 of 41

TSD-7: Compositional Trustworthiness ... 23
TSD-8: Continuous Protection ... 23
TSD-9: Defense In Depth ... 23
TSD-10: Distributed Privilege .. 24
TSD-11: Diversity (Dynamicity) ... 24
TSD-12: Domain Separation .. 24
TSD-13: Hierarchical Protection .. 24
TSD-14: Least Functionality .. 24
TSD-15: Least Persistence ... 24
TSD-16: Least Privilege.. 24
TSD-17: Least Sharing ... 24
TSD-18: Loss Margins .. 24
TSD-19: Mediated Access .. 24
TSD-20: Minimal Trusted Elements ... 24
TSD-21: Minimize Detectability ... 24
TSD-22: Protective Defaults .. 24
TSD-23: Protective Failure ... 25
TSD-24: Protective Recovery ... 25
TSD-25: Reduced Complexity .. 25
TSD-26: Redundancy ... 25
TSD-27: Self-Reliant Trustworthiness .. 25
TSD-28: Structured Decomposition and Composition ... 25
TSD-29: Substantiated Trustworthiness .. 25
TSD-30: Trustworthy System Control .. 25

PRACTITIONER-LEVEL: COMPLIANCE OBLIGATIONS FOR SOFTWARE SUPPLY CHAIN SECURITY (SSCS) .. 26
EXECUTIVE ORDER (EO) 14028.. 26
SOFTWARE PRODUCER OBLIGATIONS ... 27
SOFTWARE CONFORMITY ASSESSMENT ... 27
ATTESTING TO CONFORMITY WITH SECURE SOFTWARE DEVELOPMENT PRACTICES (SSDP) ... 28

ARCHITECT-LEVEL: DESIGN FOR CYBER RESILIENCY .. 30
CYBER RESILIENCY CONSTRUCTS .. 30

Goal .. 30
Objective ... 31
Strategic Design Principles .. 31

CYBER RESILIENCY GOALS .. 31
CYBER RESILIENCY OBJECTIVES .. 31
RESILIENT & SECURE DEVELOPMENT LIFECYCLE (RSDL) STAGES ... 32

Concept ... 32
Development ... 32
Production .. 32
Utilization ... 32
Support ... 32
Retirement .. 32

ARCHITECT-LEVEL: TRUSTWORTHY SECURE DESIGN (TSD) .. 33
DESIGN APPROACH FOR TRUSTWORTHY SYSTEMS ... 33
DESIGN FOR BEHAVIORS & OUTCOMES .. 33
SECURITY DESIGN ORDER OF PRECEDENCE (SECDOP) .. 33
FUNCTIONAL DESIGN CONSIDERATIONS .. 34

Mechanism Design Criteria ... 34
Protective Failure .. 34

ARCHITECT-LEVEL: SECURE DEVELOPMENT LIFECYCLE (SDL) .. 35
SDL PROCESSES .. 35

Technical Processes... 35
Technical Management Processes .. 35
Organizational Project Enabling Processes ... 36
Agreement Process ... 36

MICROSOFT OPERATIONAL SECURITY ASSURANCE (OSA) ... 36
OSA Practice 1: Provide Training... 36
OSA Practice 2: Use Multi-Factor Authentication ... 36
OSA Practice 3: Enforce Least Privilege ... 37

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 4 of 41

OSA Practice 4: Protect Secrets ... 37
OSA Practice 5: Minimize Attack Surface .. 37
OSA Practice 6: Encrypt Data in Transit and at Rest ... 37
OSA Practice 7: Implement Security Monitoring ... 37
OSA Practice 8: Implement A Security Update Strategy ... 37
OSA Practice 9: Protect Against DDOS Attacks ... 37
OSA Practice 10: Validate the Configuration of Web Applications and Sites .. 37
OSA Practice 11: Perform Penetration Testing ... 38

GLOSSARY: ACRONYMS & DEFINITIONS .. 39
ACRONYMS .. 39
DEFINITIONS ... 40

NORMATIVE REFERENCES .. 41

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 5 of 41

EXECUTIVE SUMMARY
The Secure Code Alliance (SCA) is focused on technical competence. The Developing Security & Privacy by Design (DSPD) initiative is
a conformity assessment methodology designed to issue individual-level certifications, specific to Secure Software Development
Practices (SSDP).

Application developers (developers) are vital to the success of any organization, regardless of the industry. Developers create the
tools that we all use, from operating systems to mobile apps, backend programming, firmware, front-end interface design and other
forms of applications. Based on the new realities of an interconnected world that we live in, developers need to implement SSDP in
order to protect their code from malicious attacks. By following SSDP, developers serve a crucial role in helping ensure security and
safety, not just within an organization, but across the supply chain and society, as a whole.

Developers are in a unique position where they often have access to a wealth of sensitive information. As such, it is vital that
developers create code with both security and privacy in mind, since improper coding practices can lead to exploitable
vulnerabilities that enable hostile actors to affect the Confidentiality, Integrity, Availability and Safety (CIAS) of those affected
systems, applications and/or services.

 CONFIDENTIALITY addresses preserving authorized restrictions on
access and disclosure to authorized users and services, including
means for protecting personal privacy and proprietary information.

 INTEGRITY addresses guarding against improper modification or
destruction, including ensuring non-repudiation and authenticity.

 AVAILABILITY addresses timely, reliable access to data, systems and
services for authorized users

 SAFETY addresses reducing risk associated with technologies that
could fail or be manipulated by nefarious actors to cause death,
injury, illness, damage to or loss of equipment.

This reality requires developers to adopt a “secure development mindset” that influences how their code will affect not only the
secure functionality of the application, service or process, but how it affects the privacy and security of individuals who are not
necessarily users, but anyone who is potentially affected by the application under development. Security and privacy must be
considered during development and appropriately validated before it is released “into the wild.”

The SCA supports the strategic cyber resiliency design principles that are established by NIST SP 800-160, Vol 2, Rev 1:1

 Focus on common critical assets;
 Support agility and architect for adaptability;
 Reduce attack surfaces;
 Assume compromised resources; and
 Expect adversaries to evolve.

Cyber resiliency is the ability to anticipate, withstand, recover from and adapt to adverse conditions, stresses, attacks or
compromises on systems that use or are enabled by cyber resources. From a risk management perspective, cyber resiliency is
intended to reduce the mission, business, organizational, or sector risk of depending on cyber resources.

The SCA references numerous leading industry frameworks for SSDP in an effort to provide “industry-recognized secure practices”
references. These voluntary consensus standards, most publicly-available at no cost, are primarily referenced by the SCA:

 NIST SP 800-218 2
 NIST SP 800-160 (vol 1 & 2) 3
 OWASP Top Ten 4
 ISO/IEC/IEEE 15288 5 (as referenced by NIST SP 800-160 vol 1)

1 NIST SP 800-160 Vol 2 Rev 1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
2 NIST SP 800-218 v1.1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
3 NIST SP 800-160 Vol 1 Rev 1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1r1.pdf
 NIST SP 800-160 Vol 2 Rev 1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
4 OWASP Top 10 - https://owasp.org/www-project-top-ten/
5 ISO/IEC/IEEE 15288 - https://www.iso.org/standard/63711.html

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1r1-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
https://owasp.org/www-project-top-ten/
https://www.iso.org/standard/63711.html

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 6 of 41

 Microsoft Security Development Lifecycle 6

ABOUT THE SECURE CODE ALLIANCE (SCA)
The Secure Code Alliance (SCA) was formed to address the need that organizations have to ensure its developers are aware of and
implement Secure Software Development Practices (SSDP) in order to minimize the threat posed by malicious actors against the
organization’s Applications, Services and Processes (ASP).

The SCA’s conformity assessment is the Developing Security & Privacy by Design (DSPD) initiative. The DSPD is an effort to promote
transdisciplinary competency for developers to deliver trustworthy ASP. This concept of competency is focused on a practitioner’s or
architect’s ability to: 7

 Work with stakeholders to ensure that security objectives, protection needs/concerns, security requirements and
associated validation methods are defined;

 Define security and privacy requirements, including associated verification methods;
 Develop security views and viewpoints of the system architecture and design;
 Identify and assess susceptibilities and vulnerabilities to lifecycle hazards and adversities;
 Design proactive and reactive features and functions encompassed within a balanced strategy to control asset loss and

associated loss consequences;
 Provide security considerations to inform systems engineering efforts with the objective to reduce errors, flaws and

weaknesses that may constitute a security vulnerability;
 Perform system security analyses and interprets the results of system security-relevant analyses in support of decision-

making for engineering trades and risk management;
 Identify, quantify and evaluate the costs and benefits of security features and functions and considerations to inform

assessments of alternative solutions, engineering trade-offs and risk treatment decisions;
 Demonstrate through evidence-based reasoning that security and trustworthiness claims for the system have been

satisfied; and
 Leverage multiple security and other specialties to address all feasible solutions.

SCA BODY OF KNOWLEDGE (SCA-BOK)
For reference materials, the SCA’s intent is to leverage freely-available content that are available at no cost to the public. In the
realm of SSDP, there are certain voluntary consensus standards that are important to consider as industry-recognized practices and
those primarily include, but are not limited to:

 NIST SP 800-218 8
 NIST SP 800-160 Vol 1 9
 NIST SP 800-160 Vol 2 10
 OWASP Top Ten 11
 ISO/IEC/IEEE 15288 12 (as referenced by NIST SP 800-160 vol 1)
 Microsoft Security Development Lifecycle 13

SECURE SOFTWARE DEVELOPMENT FRAMEWORK (SSDF)
Few Software Development Life Cycle (SDLC) models explicitly address software security in detail, so it is necessary to add Secure
Software Development Practices (SSDP) to each SDLC model to ensure that the application has adequate security and data
protections “baked-in” during the development process. The SCA recognizes the Secure Software Development Framework (SSDF) 14
as a core set of high-level SSDP that can be integrated into a SDLC methodology. The SSDF offers multiple benefits that includes:

 Reducing the number of vulnerabilities in released software
 Reducing the potential impact of the exploitation of undetected or unaddressed vulnerabilities
 Addressing the root causes of vulnerabilities to prevent future recurrences;

6 Microsoft SDL - https://www.microsoft.com/en-us/securityengineering/sdl
7 NIST SP 800-160 Vol 2 Rev 1
8 NIST SP 800-218 v1.1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
9 NIST SP 800-160 Vol 1 Rev 1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1r1.pdf
10 NIST SP 800-160 Vol 2 Rev 1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
11 OWASP Top 10 - https://owasp.org/www-project-top-ten/
12 ISO/IEC/IEEE 15288 - https://www.iso.org/standard/63711.html
13 Microsoft SDL - https://www.microsoft.com/en-us/securityengineering/sdl
14 NIST SP 800-218 v1.1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

https://www.microsoft.com/en-us/securityengineering/sdl
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1r1-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf
https://owasp.org/www-project-top-ten/
https://www.iso.org/standard/63711.html
https://www.microsoft.com/en-us/securityengineering/sdl
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 7 of 41

 Providing a common vocabulary for SSDP; and
 Reduce miscommunications or assumption with parties in acquisition processes and other management activities.

SSDP are applicable for the following types of technology assets:

 Operating Systems (OS);
 Firmware;
 Mobile device apps;
 General-purpose or multi-use systems (e.g., Enterprise Information Technology (EIT));
 Dedicated or special-purpose systems (e.g., security-dedicated/purposed systems), such as Operational Technology (OT)

devices that used in industrial/manufacturing systems that includes:
o Industrial Control Systems (ICS);
o Supervisory Control and Data Acquisition (SCADA) systems;
o Programmable Logic Controllers (PLCs);
o Computerized Numerical Control (CNC) devices;
o Cyber-Physical Systems (CPS);
o Machine controllers;
o Fabricators;
o Assemblers; and
o Machining technologies; and

 Internet of Things (IoT) / Industrial Internet of Things (IIoT) that are interconnected devices having physical or virtual
representation in the digital world, sensing/actuation capability and programmability features that includes:

o Wearable technologies;
o Security systems;
o Lighting;
o Heating
o Air conditioning; and
o Fire / smoke detectors.

MISSION
The SCA’s mission is to improve the awareness and adherence to Secure Software Development Practices (SSDP) by application
developers and architects through operating a conformity assessment methodology that:

 Spans the design, development and maintenance of Applications, Services and Processes (ASP);
 Educates applicants through reinforcing reasonably-expected security and privacy principles, based on voluntary consensus

standards that considered developer-specific industry-recognized practices; and
 Leverages an online platform to test applicants on subject matter expertise that awards the applicant with a Certificate of

Conformity (CoC) upon receiving a successful score.

VISION
The SCA’s vision is that organizations from all industries ensure that the development of Applications, Services and Processes (ASP)
employ adequate security and privacy measures throughout the Software Development Life Cycle (SDLC) to ensure security and
privacy-related risks are identified and remediated appropriately.

The SCA’s conformity assessment methodology is designed with these concepts in mind:

 Identify the discipline basics for Secure Software Development Practices (SSDP) in terms of its principles, concepts and
activities; and

 Foster a common mindset to deliver secure Applications, Services and Processes (ASP), regardless of its purpose, type,
scope, size, complexity, or stage of the SDLC.

STRATEGY
The SCA’s strategy is to:

 Operate a cost-effective and meaningful conformity assessment methodology, the Developing Security & Privacy by Design
(DSPD) initiative; and

 Certify individuals for competency among application developers and architects. There are two certifications available:
(1) Certified SCA Practitioner (CSCAP) (designed for developer roles)
(2) Certified SCA Architect (CSCAA) (designed for application architecture roles)

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 8 of 41

The DSPD initiative is focused on developing a conformity assessment methodology that addresses:

 “Practitioner-level competency” among developers; and
 “Expert-level competency” among architects.

DEVELOPING SECURITY & PRIVACY BY DESIGN (DSPD) CONFORMITY ASSESSMENT
As a personnel certification body, the SCA determines if an applicant fulfils certification requirements.15 Each applicant’s subject
matter expertise on selected voluntary consensus standards is tested to determine if an acceptable level of competency is met.

Per ISO/IEC 17024 guidelines, certifications:

 Are meant to be a public statement or declaration that an individual has passed an examination and otherwise met
specified criteria demonstrating that the individual has the competencies necessary to successfully perform the role and
responsibilities that comprise a specific occupation;

 Are granted for a limited period of time;
 Must be renewed to ensure that individuals continue to possess the competencies required to perform the job; and
 May require ongoing education and/or assessment and/or experience for renewal.

The Developing Security & Privacy by Design (DSPD) initiative’s conformity assessment leverages an online platform to test
applicants on subject matter expertise through a one hundred (100) question set of multiple-choice problems. The DSPD leverages
the three (3) general types of test questions and principle areas of focus that are used when constructing test questions:

(1) Recall;
(2) Application; and
(3) Analysis.

Recall
Recall questions are designed to assess:

 Basic facts;
 Definitions;
 Concepts;
 Principles;
 Processes and procedures; and
 Generalizations

Recall questions typically test the recognition or memory of isolated information from study materials and subject matter.
Performance is not dependent on the acquisition and/or practice of skills, where it can be achieved through lectures and/or reading.

Recall questions:

 Are well-suited for beginning topics to bolster student confidence;
 Should be less utilized as courses progress into more complex topics; and
 May also be used in addition to advanced items as “fillers.”

Application
Application items/questions are more complex than simple recall questions and are designed to assess the acquisition and/or
practice of skills:

 Additional understanding of concepts and skills may be required to distinguish between plausible distractors and the one
correct key answer;

 Sets of variables may be provided within the stem or on a table or chart; and
 Scenarios may be provided initially with several multiple-choice items following which relate back to the data provided

within them.

Application questions:

 May include hierarchical progressions and sequencing of steps in application-type questions;
 Avoid overly wordy stems that teach or preach and add non-relevant data; and

15 The SCA is not accredited under the ISO/IEC 17024, but does leverage the framework as a guideline for the DSPD.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 9 of 41

 Due to the higher complexity, insure that the question being asked is clear and that only one correct (key) choice can be
made.

Analysis
Analysis items/questions represent the highest level of complexity in test preparation and performance:

 The student/examinee must demonstrate the ability to synthesize multiple variables beyond simple recall of basic facts;
and

 Application of ordered steps demonstrates conceptual thinking

Analysis questions include:

 Analysis-type items/questions;
 The evaluation of data;
 Complex problem solving;
 Making judgments about best, most appropriate or effective course of action in a given situation or scenario; and
 Integrating aspects of various areas of curricula to formulate a complete picture of the data represented in the stem or

given scenario

COMPETENCY EXPECTATIONS
The Secure Code Alliance (SCA) is focused on technical competence and it expects developers to invest the requisite time and effort
necessary to familiarize themselves with referenced materials, since these voluntary consensus standards form the basis of the SCA
Body of Knowledge (SCA-BoK) that is leveraged in the conformity assessment.

For practical purposes, individuals who earn a Certified SCA Practitioner (CSCAP) or Certified SCA Architect (CSCAA) Certificate of
Conformity (CoC) have demonstrated a level of competence necessary to ensure that the security of an organization’s Applications,
Services and Processes (ASP) are assessed throughout their operational life to reduce risks to the organization and its clients. These
certifications are valid for a period of three (3) years from the date of issue of the CoC, at which point the certification expires and
will need to be renewed through a re-examination.

Practitioner Role - Certified SCA Practitioner (CSCAP)
Application developers (practitioners) are expected to use Secure Development
Lifecycle (SDL) processes for new systems, system upgrades, or systems that are
being repurposed. These processes can be employed at any stage of the system
lifecycle and can take advantage of any system or software development
methodology, including agile, spiral, or waterfall.

CSCAPs are expected to:

 Apply lifecycle processes recursively, iteratively, concurrently, sequentially, or in parallel and to any system regardless of its
size, complexity, purpose, scope, environment of operation, or special nature.

 Understand and operationalize the organization’s security architecture that must be followed for application development
processes for development, testing, staging and production environments.

 Incorporate the organization’s risk management practices throughout application development processes across the entire
SDLC.

 Develop software applications in accordance with industry-recognized secure coding practices.
 Incorporate security and privacy measures throughout the SDLC.
 Control changes to ASP across the SDLC using formal change control procedures.
 Review custom code through a formal change management and approval process prior to release to production.
 Remove custom application accounts, user IDs and passwords before applications become active or are released to

customers.
 Confidently review SBOM documentation for security and privacy-related implications.
 Perform software conformity assessments.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 10 of 41

Architect Role - Certified SCA Architect (CSCAA)
Architects are expected to employ cyber resiliency constructs (e.g., goals, objectives,
techniques, approaches and design principles), as well as the analytic and lifecycle
processes, to tailor them to the technical, operational and threat environments for
which the architect’s systems need to be engineered.

CSCAAs are expected to:

 Define the security architecture(s) the organization will follow for application development processes.
 Define application development considerations for the organization’s risk management practices across the entire Software

Development Life Cycle (SDLC).
 Publish rules for the organization’s application development processes for development, testing, staging and production

environments.
 Develop conformity assessment practices for the organization to follow in order to demonstrate alignment with stated

Secure Software Development Practices.
 Ensure that information security and privacy principles are an integral part of Secure Software Development Practices

(SSDP) across the entire SDLC.
 Ensure security & privacy-related measures are included in the requirements for new systems or enhancements to existing

systems.
 Ensure application development practices (internal and external) adhere to industry-recognized secure coding practices.
 Develop Software Bill of Materials (SBOM) documentation for application development projects.
 Oversee changes to ASP across the SDLC using formal change control procedures.
 Oversee application security testing practices.
 implement the SSDP concepts and techniques for all High Value Assets (HVA):

o New Systems;
o Dedicated or Special-Purpose Systems;
o System of Systems;
o System Modifications;
o System Evolution; and
o System Retirement.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 11 of 41

PRACTITIONER-LEVEL: UNDERSTANDING THE ROLE OF SECURITY MECHANISMS
One important facet of cybersecurity and data protection that the Developing Security & Privacy by Design (DSPD) initiative focuses
on is educating applicants on the holistic concepts of how broader business planning and analysis ultimately leads to actionable
cybersecurity and privacy requirements. Understanding this hierarchical nature of requirements is a fundamental construct of
governance processes.

ADEQUATE SECURITY
No technology can provide absolute security due to the limits of human certainty, the uncertainty that exists in the life cycle of every
system and the constraints of cost, schedule, performance, feasibility and practicality. Therefore, trade-offs are expected to be
routinely made across contradictory, competing and conflicting needs and constraints. However, these trade-offs must be optimized
to achieve “adequate security” which reflects a risk-based decision made by stakeholders. 16

An organization publishes policies to eliminate potential gaps in that desired governed behavior in an attempt to achieve “adequate
security” for the organization based on what a reasonable individual would be expected to do in a similar situation. The rules
associated with this “governed behavior” must be accurate, consistent, compatible and complete with respect to the executive
leadership’s objectives to successfully accomplish the organization’s mission and overall strategy.

An organization’s policies ultimately define the behavior of Individual Contributors (IC) (e.g., developers) in performing their roles
and associated responsibilities, as well as for the development of processes and procedures. This eventually leads to the
configuration of technology assets (e.g., systems, applications, services and processes), where a discrete set of restrictions and
properties must exist to specify how that asset enforces or contributes to the enforcement of the organizational security policies.
This concept is depicted in the graphic shown below:17

The required configuration settings for technology assets must be inclusive of technical and business requirements, which ultimately
fall under organizational cybersecurity and privacy policies. Requirements can be categorized as: 18

 Stakeholder requirements that address the need to be satisfied in a design-independent manner; and
 System requirements that express the specific solution that will be delivered (design-dependent manner).

16 NIST SP 800-160 Vol 1 Rev 1 Appendix C
17 Concept to build adequate cybersecurity and privacy by design and default - https://content.securecodealliance.com/sca-concept.pdf
18 NIST SP 800-160 Vol 1 Rev 1 Appendix C

https://content.securecodealliance.com/sca-concept.pdf
https://content.securecodealliance.com/sca-concept.pdf

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 12 of 41

SECURE SYSTEMS
A “secure system” is a system that ensures that only the authorized intended behaviors and outcomes occur, thereby providing
freedom from those conditions, both intentionally/with malice and unintentionally/without malice, that can cause a loss of
information assets with unacceptable consequences.19 This definition expresses an ideal that captures three essential aspects of
what it means to achieve security:

1. Enable the delivery of the required system capability despite intentional and unintentional forms of adversity;
2. Enforce constraints to ensure that only the desired behaviors and outcomes associated with the required system capability

are realized while satisfying the first aspect; and
3. Enforce constraints based on a set of rules to ensure that only authorized human-to-machine and machine-to-machine

interactions and operations are allowed to occur while satisfying the second aspect.

For a system, adequate security is an evidence-based determination that achieves and optimizes security performance against all
other performance objectives and constraints. Judgments of adequate security are driven by the stakeholder objectives, needs and
concerns associated with the system. Adequate security has two elements:

 Achieve the minimum acceptable threshold of security performance; and
 Maximize security performance to the extent that any additional increase in security performance results in a degradation

of some other aspect of system performance or requires an unacceptable operational commitment.

Stakeholder Security Requirements
Stakeholder security requirements are those stakeholder requirements that are security-relevant. Stakeholder security requirements
specify:

 The protection needed for the mission or business, data, information, processes, functions, humans and system assets;
 The roles, responsibilities and security-relevant actions of individuals who perform and support the mission or business

processes;
 The interactions between the security-relevant solution elements; and
 The assurance that is to be obtained in the security solution.

System Security Requirements
System requirements specify the technical view of a system or solution that meets the specified stakeholder needs. The system
requirements are a transformation of the validated stakeholder requirements. System requirements specify what the system or
solution must do to satisfy the stakeholder requirements. System security requirements are those system requirements that are
security relevant. These requirements define:

 The protection capabilities provided by the security solution;
 The performance and behavioral characteristics exhibited by the security solution;
 Assurance processes, procedures and techniques;
 Constraints on the system and the processes, methods and tools used to realize the system; and
 The evidence required to determine the system security requirements have been satisfied.

SYSTEM OF SYSTEMS MINDSET
A system is “an arrangement of parts or elements that together exhibit a behavior or meaning that the individual constituents do
not.”20 Since developers do not design, code and maintain Applications, Services and Processes (ASP) in a vacuum, developers need
to embrace a “system of systems” mindset toward system interaction, since there are legitimate security and privacy concerns with
untrustworthy dependencies. A system of systems is “set of systems or system elements that interact to provide a unique capability
that none of the constituent systems can accomplish on its own.21 A system of systems consists of a number of constituent systems
plus any inter-system infrastructure, facilities and processes necessary to enable the constituent systems to integrate or
interoperate.

This concept includes “interfacing systems” that have an interface for exchanging data or information, energy, or other resources.
Interfacing systems have two specific subsets:

19 NIST SP 800-160 Vol 1 Rev 1 – Section 3.2
20 NIST SP 800-160 Vol 1 Rev 1 – Section 2.1.1
21 NIST SP 800-160 Vol 1 Rev 1 – Appendix B. Glossary

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 13 of 41

 Enabling Systems. These provide essential services required to create and sustain the system. Examples of enabling systems
include:

o Software development environments;
o Production systems;
o Training systems; and
o Maintenance systems; and

 Interoperating Systems. These interact with systems for the purpose of jointly performing a function during the utilization
and sustainment stages of the system life cycle. Interoperating systems often form a system of systems.

SECDEVOPS
Security, Development & Operations (SecDevOps), also commonly called DevSecOps, is a relationship model that integrates security
in development and operational practices throughout the SDLC. SecDevOps is a “three legs of the stool” concept where each leg is
important and the stool falls over if one or more leg is missing. There is considerable material that exists on the subject of
SecDevOps, so the SCA-BoK will focus only on a few of its concepts.22

Avoiding Siloes
SecDevOps merges security, development and operations capabilities so these specialized functions can work in unison to achieve a
common goal, which is rapid and secure development. This process requires organizational leadership to properly resource
integrations and decision making capabilities, but its benefits outweigh the drawbacks that exist with siloed operations.

GRC Frames SecDevOps Controls
Just as the concept SecDevOps is to integrate functions to eliminate siloed
operations, it is important to understand that SecDevOps does not exist within a
vacuum. The “security” component of SecDevOps is constrained by the
organization’s overall Governance, Risk & Compliance (GRC) function. GRC exists
to align people, processes and technology with the organization’s business
objectives, while managing risk and meeting statutory, regulatory and
contractual compliance requirements. The security feed of SecDevOps is
constrained by the controls GRC deems appropriate.

22 DevOps.com - https://devops.com/category/blogs/devsecops/

https://devops.com/category/blogs/devsecops/

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 14 of 41

Compliant vs Secure
Both practitioners and architects need to understand the difference between "compliant" versus "secure" since that is necessary to
have coherent risk management discussions. When evaluating “what looks right” for security controls that are applicable to an
application, service or process, this involves not only the GRC team, but the business stakeholders to properly identify “must have”
vs “nice to have” security and privacy requirements:23

 Minimum Compliance Criteria (MCC)
o These are the absolute minimum requirements that must be addressed to comply with applicable laws, regulations

and contracts.
o MCC are primarily externally-influenced, based on industry, government, state and local regulations.
o MCC should never imply adequacy for secure practices and data protection, since they are merely compliance-

related.
 Discretionary Security Requirements (DSR)

o These are tied to the organization’s risk appetite since DSR are “above and beyond” MCC, where the organization
self-identifies additional cybersecurity and data protection controls to address voluntary industry practices or
internal requirements, such as findings from internal audits or risk assessments.

o DSR are primarily internally-influenced, based on the organization’s respective industry and risk tolerance.
o While MCC establish the foundational floor that must be adhered to, DSR are where organizations often achieve

improved efficiency, automation and enhanced security.

The combination of MCC and DSR identify Minimum Viable Product (MVP) security and
privacy requirements. This can also be considered Minimum Security Requirements (MSR)
for the application, service or process throughout its lifecycle.

Developers and architects should strive for a set of security and privacy controls that
equates to “secure and compliant” instead of just “compliant” since meeting minimum
compliance requirements rarely means an application, service or process will be secure.

23 Integrated Controls Model (ICM) - https://content.securecodealliance.com/Integrated_Controls_Management.pdf

https://content.securecodealliance.com/Integrated_Controls_Management.pdf

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 15 of 41

PRACTITIONER-LEVEL: SECURE SOFTWARE DEVELOPMENT PRACTICES (SSDP)
The SCA promotes a principle-based approach to Secure Software Development Practices. The most important concept to
understand is to avoid assumptions anywhere along the SDLC. As a developer, it is your obligation to eliminate assumptions to
ensure Secure Software Development Practices (SSDP) are properly implemented.

The SSDP are based on the Secure Software Development Framework (SSDF) that provides developers with fundamental, sound and
secure recommended practices based on established secure software development practice documents. The practices are organized
into four (4) domains:

1. Prepare the Organization (PO)
2. Protect the Software (PS)
3. Produce Well-Secured Software (PW)
4. Respond to Vulnerabilities (RV)

DOMAIN 1: PREPARE THE ORGANIZATION (PO)
Organizations should ensure that their people, processes and technology are prepared to perform secure software development at
the organization level. Many organizations will find some PO practices to also be applicable to subsets of their software
development, like individual development groups or projects.

Practice PO.1: Define Security Requirements for Software Development
Practice: Ensure that security requirements for software development are known at all times so that they can be taken into account
throughout the SDLC and duplication of effort can be minimized because the requirements information can be collected once and
shared. This includes requirements from internal sources (e.g., the organization’s policies, business objectives and risk management
strategy) and external sources (e.g., applicable laws and regulations). 24

SSDP Task PO.1.1
Task: Identify and document all security requirements for the organization’s software development infrastructures and processes
and maintain the requirements over time. 25

SSDP Task PO.1.2
Task: Identify and document all security requirements for organization-developed software to meet and maintain the requirements
over time. 26

SSDP Task PO.1.3
Task: Communicate requirements to all third parties who will provide commercial software components to the organization for
reuse by the organization’s own software. 27

Practice PO.2: Implement Roles and Responsibilities
Practice: Ensure that everyone inside and outside of the organization involved in the SDLC is prepared to perform their SDLC-related
roles and responsibilities throughout the SDLC. 28

SSDP Task PO.2.1
Task: Create new roles and alter responsibilities for existing roles as needed to encompass all parts of the SDLC. Periodically review
and maintain the defined roles and responsibilities, updating them as needed. 29

24 NIST SP 800-218. Table 1. Practice PO.1
25 NIST SP 800-218. Table 1. Task PO.1.1 | OWASP A04:2021
26 NIST SP 800-218. Table 1. Task PO.1.2 | OWASP A04:2021
27 NIST SP 800-218. Table 1. Task PO.1.3 | OWASP A04:2021
28 NIST SP 800-218. Table 1. Practice PO.2
29 NIST SP 800-218. Table 1. Task PO.2.1 | OWASP A04:2021

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 16 of 41

SSDP Task PO.2.2
Task: Provide role-based training for all personnel with responsibilities that contribute to secure development. Periodically review
personnel proficiency and role-based training and update the training as needed. 30

SSDP Task PO.2.3
Task: Obtain upper management or authorizing official commitment to secure development and convey that commitment to all with
development-related roles and responsibilities. 31

Practice PO.3: Implement Supporting Toolchains
Practice: Use automation to reduce human effort and improve the accuracy, reproducibility, usability and comprehensiveness of
security practices throughout the SDLC, as well as provide a way to document and demonstrate the use of these practices.
Toolchains and tools may be used at different levels of the organization, such as organization-wide or project-specific and may
address a particular part of the SDLC, like a build pipeline. 32

SSDP Task PO.3.1
Task: Specify which tools or tool types must or should be included in each toolchain to mitigate identified risks, as well as how the
toolchain components are to be integrated with each other. 33

SSDP Task PO.3.2
Task: Follow recommended security practices to deploy, operate and maintain tools and toolchains. 34

SSDP Task PO.3.3
Task: Configure tools to generate artifacts of their support of secure software development practices as defined by the organization.
35

Practice PO.4: Define and Use Criteria for Software Security Checks
Practice: Help ensure that the software resulting from the SDLC meets the organization’s expectations by defining and using criteria
for checking the software’s security during development. 36

SSDP Task PO.4.1
Task: Define criteria for software security checks and track throughout the SDLC. 37

SSDP Task PO.4.2
Task: Implement processes, mechanisms, etc. to gather and safeguard the necessary information in support of the criteria. 38

Practice PO.5: Implement and Maintain Secure Environments for Software Development
Practice: Ensure that all components of the environments for software development are strongly protected from internal and
external threats to prevent compromises of the environments or the software being developed or maintained within them.
Examples of environments for software development include development, build, test and distribution environments. 39

SSDP Task PO.5.1
Task: Separate and protect each environment involved in software development. 40

30 NIST SP 800-218. Table 1. Task PO.2.2 | OWASP A04:2021
31 NIST SP 800-218. Table 1. Task PO.2.3 | OWASP A04:2021
32 NIST SP 800-218. Table 1. Practice PO.3
33 NIST SP 800-218. Table 1. Task PO.3.1 | OWASP A06:2021 & A08:2021
34 NIST SP 800-218. Table 1. Task PO.3.2 | OWASP A06:2021 & A08:2021
35 NIST SP 800-218. Table 1. Task PO.3.3 | OWASP A06:2021 & A08:2021
36 NIST SP 800-218. Table 1. Practice PO.4
37 NIST SP 800-218. Table 1. Task PO.4.1 | OWASP A04:2021
38 NIST SP 800-218. Table 1. Task PO.4.2 | OWASP A04:2021
39 NIST SP 800-218. Table 1. Practice PO.5
40 NIST SP 800-218. Table 1. Task PO.5.1 | OWASP A04:2021

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 17 of 41

SSDP Task PO.5.2
Task: Secure and harden development endpoints (e.g., endpoints for software designers, developers, testers, builders, etc.) to
perform development-related tasks using a risk-based approach. 41

DOMAIN 2: PROTECT SOFTWARE (PS)
Organizations should protect all components of their software from tampering and unauthorized access.

Practice PS.1: Protect All Forms of Code from Unauthorized Access and Tampering
Practice: Help prevent unauthorized changes to code, both inadvertent and intentional, which could circumvent or negate the
intended security characteristics of the software. For code that is not intended to be publicly accessible, this helps prevent theft of
the software and may make it more difficult or time-consuming for attackers to find vulnerabilities in the software. 42

SSDP Task PS.1.1
Task: Store all forms of code – including source code, executable code and configuration-as-code – based on the principle of least
privilege so that only authorized personnel, tools, services, etc. have access. 43

Practice PS.2: Provide a Mechanism for Verifying Software Release Integrity
Practice: Help software acquirers ensure that the software they acquire is legitimate and has not been tampered with. 44

SSDP Task PS.2.1
Task: Make software integrity verification information available to software acquirers. 45

Practice PS.3: Archive and Protect Each Software Release
Practice: Preserve software releases in order to help identify, analyze and eliminate vulnerabilities discovered in the software after
release. 46

SSDP Task PS.3.1
Task: Securely archive the necessary files and supporting data (e.g., integrity verification information, provenance data) to be
retained for each software release. 47

SSDP Task PS.3.2
Task: Collect, safeguard, maintain and share provenance data for all components of each software release (e.g., in a Software Bill of
Materials (SBOM). 48

DOMAIN 3: PRODUCE WELL-SECURED SOFTWARE (PW)
Organizations should produce well-secured software with minimal security vulnerabilities in its releases.

Practice PW.1: Design Software to Meet Security Requirements and Mitigate Security Risks
Practice: Identify and evaluate the security requirements for the software; determine what security risks the software is likely to
face during operation and how the software’s design and architecture should mitigate those risks; and justify any cases where risk-

41 NIST SP 800-218. Table 1. Task PO.5.2 | OWASP A04:2021
42 NIST SP 800-218. Table 1. Practice PS.1
43 NIST SP 800-218. Table 1. Task PS.1.1 | OWASP A01:2021, A02:2021, A04:2021, A08:2021
44 NIST SP 800-218. Table 1. Practice PS.2
45 NIST SP 800-218. Table 1. Task PS.2.1
46 NIST SP 800-218. Table 1. Practice PS.3
47 NIST SP 800-218. Table 1. Task PS.3.1
48 NIST SP 800-218. Table 1. Task PS.3.2

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 18 of 41

based analysis indicates that security requirements should be relaxed or waived. Addressing security requirements and risks during
software design (secure by design) is key for improving software security and also helps improve development efficiency. 49

SSDP Task PW.1.1
Task: Use forms of risk modeling – such as threat modeling, attack modeling, or attack surface mapping – to help assess the security
risk for the software. 50

SSDP Task PW.1.2
Task: Track and maintain the software’s security requirements, risks and design decisions. 51

SSDP Task PW.1.3
Task: Where appropriate, build in support for using standardized security features and services (e.g., enabling software to integrate
with existing log management, identity management, access control and vulnerability management systems) instead of creating
proprietary implementations of security features and services. 52

Practice PW.2: Review the Software Design to Verify Compliance with Security Requirements and Risk Information
Practice: Help ensure that the software will meet the security requirements and satisfactorily address the identified risk information.
53

SSDP Task PW.2.1
Task: Have 1) a qualified person (or people) who were not involved with the design; and/or 2) automated processes instantiated in
the toolchain review the software design to confirm and enforce that it meets all of the security requirements and satisfactorily
addresses the identified risk information. 54

Practice PW.3: Verify Third-Party Software Complies with Security Requirements
Moved to PW.4 [per NIST SP 800-218]

 PW.3.1: Moved to PO.1.3
 PW.3.2: Moved to PW.4.4

Practice PW.4: Reuse Existing, Well-Secured Software When Feasible Instead of Duplicating Functionality
Practice: Lower the costs of software development, expedite software development and decrease the likelihood of introducing
additional security vulnerabilities into the software by reusing software modules and services that have already had their security
posture checked. This is particularly important for software that implements security functionality, such as cryptographic modules
and protocols. 55

SSDP Task PW.4.1
Task: Acquire and maintain well-secured software components (e.g., software libraries, modules, middleware, frameworks) from
commercial, open-source and other third-party developers for use by the organization’s software. 56

SSDP Task PW.4.2
Task: Create and maintain well-secured software components in-house following SDLC processes to meet common internal software
development needs that cannot be better met by third-party software components. 57

49 NIST SP 800-218. Table 1. Practice PW.1
50 NIST SP 800-218. Table 1. Task PW.1.1
51 NIST SP 800-218. Table 1. Task PW.1.2| OWASP A04:2021
52 NIST SP 800-218. Table 1. Task PW.1.3 | OWASP A01:2021 & A04:2021
53 NIST SP 800-218. Table 1. Practice PW.2
54 NIST SP 800-218. Table 1. Task PW.2.1
55 NIST SP 800-218. Table 1. Practice PW.4
56 NIST SP 800-218. Table 1. Task PW.4.1 | OWASP A02:2021, A06:2021, A07:2021, A08:2021 A09:2021 & A10:2021
57 NIST SP 800-218. Table 1. Task PW.4.2 | OWASP A02:2021, A06:2021, A07:2021, A08:2021 A09:2021 & A10:2021

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 19 of 41

SSDP Task PW.4.3
Moved to PW.1.3 [per NIST SP 800-218]

SSDP Task PW.4.4
Task: Verify that acquired commercial, open-source and all other third-party software components comply with the requirements, as
defined by the organization, throughout their life cycles. 58

SSDP Task PW.4.5
Moved to Tasks PW.4.1 and PW.4.4 [per NIST SP 800-218]

Practice PW.5: Create Source Code by Adhering to Secure Coding Practices
Practice: Decrease the number of security vulnerabilities in the software and reduce costs by minimizing vulnerabilities introduced
during source code creation that meet or exceed organization-defined vulnerability severity criteria. 59

SSDP Task PW.5.1
Task: Follow all secure coding practices that are appropriate to the development languages and environment to meet the
organization’s requirements. 60

SSDP Task PW.5.2
Moved to PW.5.1 [per NIST SP 800-218]

Practice PW.6: Configure the Compilation, Interpreter and Build Processes to Improve Executable Security
Practice: Decrease the number of security vulnerabilities in the software and reduce costs by eliminating vulnerabilities before
testing occurs. 61

SSDP Task PW.6.1
Task: Use compiler, interpreter and build tools that offer features to improve executable security. 62

SSDP Task PW.6.2
Task: Determine which compiler, interpreter and build tool features should be used and how each should be configured, then
implement and use the approved configurations. 63

Practice PW.7: Review and/or Analyze Human-Readable Code to Identify Vulnerabilities and Verify Compliance with
Security Requirements
Practice: Help identify vulnerabilities so that they can be corrected before the software is released to prevent exploitation. Using
automated methods lowers the effort and resources needed to detect vulnerabilities. Human-readable code includes source code,
scripts and any other form of code that an organization deems human-readable. 64

SSDP Task PW.7.1
Task: Determine whether code review (a person looks directly at the code to find issues) and/or code analysis (tools are used to find
issues in code, either in a fully automated way or in conjunction with a person) should be used, as defined by the organization. 65

58 NIST SP 800-218. Table 1. Task PW.4.4 | OWASP A02:2021, A06:2021, A07:2021, A08:2021 A09:2021 & A10:2021
59 NIST SP 800-218. Table 1. Practice PW.5
60 NIST SP 800-218. Table 1. Task PW.5.1
61 NIST SP 800-218. Table 1. Practice PW.6
62 NIST SP 800-218. Table 1. Task PW.6.1
63 NIST SP 800-218. Table 1. Task PW.6.2
64 NIST SP 800-218. Table 1. Practice PW.7
65 NIST SP 800-218. Table 1. Task PW.7.1 | OWASP A03:2021

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 20 of 41

SSDP Task PW.7.2
Task: Perform the code review and/or code analysis based on the organization’s secure coding standards and record and triage all
discovered issues and recommended remediations in the development team’s workflow or issue tracking system. 66

Practice PW.8: Test Executable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements
Practice: Help identify vulnerabilities so that they can be corrected before the software is released in order to prevent exploitation.
Using automated methods lowers the effort and resources needed to detect vulnerabilities and improves traceability and
repeatability. Executable code includes binaries, directly executed bytecode and source code and any other form of code that an
organization deems executable. 67

SSDP Task PW.8.1
Task: Determine whether executable code testing should be performed to find vulnerabilities not identified by previous reviews,
analysis, or testing and, if so, which types of testing should be used. 68

SSDP Task PW.8.2
Task: Scope the testing, design the tests, perform the testing and document the results, including recording and triaging all
discovered issues and recommended remediations in the development team’s workflow or issue tracking system. 69

Practice PW.9: Configure Software to Have Secure Settings by Default
Practice: Help improve the security of the software at the time of installation to reduce the likelihood of the software being
deployed with weak security settings, putting it at greater risk of compromise. 70

SSDP Task PW.9.1
Task: Define a secure baseline by determining how to configure each setting that has an effect on security or a security-related
setting so that the default settings are secure and do not weaken the security functions provided by the platform, network
infrastructure, or services. 71

SSDP Task PW.9.2
Task: Implement the default settings (or groups of default settings, if applicable) and document each setting for software
administrators. 72

DOMAIN 4: RESPOND TO VULNERABILITIES (RV)
Organizations should identify residual vulnerabilities in their software releases and respond appropriately to address those
vulnerabilities and prevent similar ones from occurring in the future.

Practice RV.1: Identify and Confirm Vulnerabilities on an Ongoing Basis
Practice: Help ensure that vulnerabilities are identified more quickly so that they can be remediated more quickly in accordance with
risk, reducing the window of opportunity for attackers. 73

SSDP Task RV.1.1
Task: Gather information from software acquirers, users and public sources on potential vulnerabilities in the software and third-
party components that the software uses and investigate all credible reports. 74

66 NIST SP 800-218. Table 1. Task PW.7.2 | OWASP A03:2021
67 NIST SP 800-218. Table 1. Practice PW.8
68 NIST SP 800-218. Table 1. Task PW.8.1 | OWASP A03:2021
69 NIST SP 800-218. Table 1. Task PW.8.2 | OWASP A03:2021
70 NIST SP 800-218. Table 1. Practice PW.9
71 NIST SP 800-218. Table 1. Task PW.9.1 | OWASP A04:2021 & A05:2021
72 NIST SP 800-218. Table 1. Task PW.9.2 | OWASP A04:2021 & A05:2021
73 NIST SP 800-218. Table 1. Practice RV.1
74 NIST SP 800-218. Table 1. Task RV.1.1

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 21 of 41

SSDP Task RV.1.2
Task: Review, analyze, and/or test the software’s code to identify or confirm the presence of previously undetected vulnerabilities.
75

SSDP Task RV.1.3
Task: Have a policy that addresses vulnerability disclosure and remediation and implement the roles, responsibilities and processes
needed to support that policy. 76

Practice RV.2: Assess, Prioritize and Remediate Vulnerabilities
Practice: Help ensure that vulnerabilities are remediated in accordance with risk to reduce the window of opportunity for attackers.
77

SSDP Task RV.2.1
Task: Analyze each vulnerability to gather sufficient information about risk to plan its remediation or other risk response. 78

SSDP Task RV.2.2
Task: Plan and implement risk responses for vulnerabilities. 79

Practice RV.3: Analyze Vulnerabilities to Identify Their Root Causes
Practice: Help reduce the frequency of vulnerabilities in the future. 80

SSDP Task RV.3.1
Task: Analyze identified vulnerabilities to determine their root causes. 81

SSDP Task RV.3.2
Task: Analyze the root causes over time to identify patterns, such as a particular secure coding practice not being followed
consistently. 82

SSDP Task RV.3.3
Task: Review the software for similar vulnerabilities to eradicate a class of vulnerabilities and proactively fix them rather than
waiting for external reports. 83

SSDP Task RV.3.4
Task: Review the SDLC process and update it if appropriate to prevent (or reduce the likelihood of) the root cause recurring in
updates to the software or in new software that is created. 84

75 NIST SP 800-218. Table 1. Task RV.1.2 | OWASP A05:2021, A06:2021
76 NIST SP 800-218. Table 1. Task RV.1.3
77 NIST SP 800-218. Table 1. Practice RV.2
78 NIST SP 800-218. Table 1. Task RV.2.1
79 NIST SP 800-218. Table 1. Task RV.2.2
80 NIST SP 800-218. Table 1. Practice RV.3
81 NIST SP 800-218. Table 1. Task RV.3.1
82 NIST SP 800-218. Table 1. Task RV.3.2
83 NIST SP 800-218. Table 1. Task RV.3.3
84 NIST SP 800-218. Table 1. Task RV.3.4

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 22 of 41

PRACTITIONER-LEVEL: TRUSTWORTHY SECURE DESIGN PRINCIPLES & CONCEPTS

Key Security Objective: An important objective for security is the reduction of uncertainty regarding the occurrence and effects of
adverse events. Reducing the uncertainty of adverse events is achieved by eliminating hazards, susceptibility and vulnerability to the
extent possible. Where elimination cannot occur, their effects should be controlled to the extent possible. Applying the design
principles for trustworthy secure systems is a means of achieving the elimination and control of the hazards, susceptibility and
vulnerability that lead to adverse events. 85

The SCA promotes a principle-based approach to Secure Software Development Practices. The most important concept to
understand is to avoid assumptions anywhere along the SDLC. As a developer, it is your obligation to eliminate assumptions to
ensure Secure Software Development Practices (SSDP) are properly implemented.

NIST SP 800-160, Vol 1, Rev 1 86 contains a set of principles that serve as the foundation for engineering trustworthy secure systems.
The principles for trustworthy secure design are applied to control the adversity that might occur as a direct or indirect result of the
system delivering a specified capability at a specified level of performance. The principles represent research, development and
application experience starting with the early incorporation of security mechanisms for trusted operating systems to today’s fully
networked, distributed, mobile and virtual computing components, environments and systems. The principles are intended to be
universally applicable across this broad range of systems, as well as new systems as they emerge and mature.

The principles for trustworthy secure design provide a basis for reasoning about a system. As reasoning tools, the inherent suitability
of the principles in a particular situation will depend on the judgment of the practitioner. Engineering judgment must be exercised in
the application of the principles for trustworthy secure systems. The principles should not be applied as “rules” to be complied with,
nor should they be prioritized, sequenced, or ordered for prescriptive application, or used individually or in groups as a basis for
making judgments of conformance. Principles are subject to various priorities and constraints that may restrict or preclude their
application. At times, these principles may be in conflict with other principles and must be deconflicted. In practice, the principles
can be satisfied or implemented in various and perhaps equally effective ways. Within the system life cycle, the applicability of a
particular principle may change due to evolving requirements, protection needs, priorities, or constraints; architecture and design
decisions and trade-offs; or changes in the risk acceptance threshold.

APPLICATION OF DESIGN PRINCIPLES TO COMMERCIAL PRODUCTS
For commercial products to be trustworthy commensurate with their criticality, security design principles should be selected and
applied appropriately throughout the products’ system life cycle. Each design principle must be assessed for its relevance,
applicability and validity.

Many commercial products have been designed, developed and evaluated against specifications from those standards and
guidelines up to and including the highest levels of assurance (e.g., TCSEC Class A1 and Class B3). These products represent use cases
of trustworthy components and systems that have been verified to be highly resistant to penetration from determined adversaries.
To merit the trust of consumers, commercial products must demonstrate – in a manner that can be independently verified – that the
security design principles articulated in this section have been applied to produce components and systems that are both sound and
logically coherent with respect to security.

TRUSTWORTHINESS DESIGN PRINCIPLES
Trustworthiness design principles are based on the historical meaning of trustworthiness and trust and their use as the basis for the
design of secure systems. The terms trustworthiness and trust as follows: 87

 Trustworthiness: The demonstrated worthiness of an entity to be trusted based on evidence that supports a claim or
judgment of being trustworthy.

 Trust: A belief that an entity can be trusted. (Implies that trust may be granted to an entity whether the entity is
trustworthy or not).

Trustworthiness is a cross-cutting objective in the design of systems due to the consequences of the failure of systems to behave
and produce outcomes only as authorized and intended. The terms trust and trusted are used to mean “the decision is made to trust

85 NIST SP 800-160 Vol 1 Rev 1 – Appendix E
86 NIST SP 800-160 Vol 1 Rev 1
87 NIST SP 800-160 Vol 1 Rev 1 – Section 2.3

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 23 of 41

because the required trustworthiness is demonstrated.” Trustworthiness is associated with one of the essential design criteria and
the reference monitor concept.88 A protection mechanism or feature must be evaluable (e.g., the mechanism must be sufficiently
small and simple enough to be assessed to produce adequate confidence in the protection provided, the constraint or control
objective enforced and the correct implementation of the mechanism).

Trustworthiness design principles are fundamental to managing complexity and otherwise aid in understanding the engineered
system. The principles are necessary to achieve loss control objectives given the complexity in understanding loss in context (based
on how the system is intended to be utilized and sustained). Complexity increases analysis workloads and reduces confidence in that
analysis. Complexity also increases the costs and difficulty of performing systems analyses for loss. That is, systems may be too
complex to be analyzed for adequate assurance.

There are thirty (30) Trustworthy Secure Design (TSD) principles identified in NIST SP 800-160 Vol 1 Rev 1: 89

TSD-1: Anomaly Detection
Principle: Any salient anomaly in the system or its environment is detected in a timely manner that enables effective response
action.90

TSD-2: Clear Abstractions
Principle: The abstractions used to characterize the system are simple, well-defined, accurate, precise, necessary, and sufficient.91

TSD-3: Commensurate Protection
Principle: The strength and type of protection provided to a system element are commensurate with the most significant adverse
effect that results from a failure of that element. 92

TSD-4: Commensurate Response
Principle: The system design matches the aggressiveness of an engineered response action’s effect to the needed immediacy to
control the effects of each loss scenario. 93

TSD-5: Commensurate Rigor
Principle: The rigor associated with the conduct of an engineering activity provides the confidence required to address the most
significant adverse effect that can occur. 94

TSD-6: Commensurate Trustworthiness
Principle: A system element is trustworthy to a level commensurate with the most significant adverse effect that results from a
failure of that element. 95

TSD-7: Compositional Trustworthiness
Principle: The system design is trustworthy for each aggregate composition of interacting system elements.96

TSD-8: Continuous Protection
Principle: The protection provided for a system element must be effective and uninterrupted during the time that the protection is
required.97

TSD-9: Defense In Depth
Principle: Loss is prevented or minimized by employing multiple coordinated mechanisms. 98

88 NIST SP 800-160 Vol 1 Rev 1 – Section D.4.2
89 NIST SP 800-160 Vol 1 Rev 1 Appendix E
90 NIST SP 800-160 Vol 1 Rev 1 Appendix E.1
91 NIST SP 800-160 Vol 1 Rev 1 Appendix E.2
92 NIST SP 800-160 Vol 1 Rev 1 Appendix E.3
93 NIST SP 800-160 Vol 1 Rev 1 Appendix E.4
94 NIST SP 800-160 Vol 1 Rev 1 Appendix E.5
95 NIST SP 800-160 Vol 1 Rev 1 Appendix E.6
96 NIST SP 800-160 Vol 1 Rev 1 Appendix E.7
97 NIST SP 800-160 Vol 1 Rev 1 Appendix E.8

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 24 of 41

TSD-10: Distributed Privilege
Principle: Multiple authorized entities act in a coordinated manner before an operation on the system is allowed to occur.99

TSD-11: Diversity (Dynamicity)
Principle: The system design delivers the required capability through structural, behavioral, or data or control flow variation. 100

TSD-12: Domain Separation
Principle: Domains with distinctly different protection needs are physically or logically separated.101

TSD-13: Hierarchical Protection
Principle: A system element need not be protected from more trustworthy elements. 102

TSD-14: Least Functionality
Principle: Each system element has the capability to accomplish its required functions but no more. 103

TSD-15: Least Persistence
Principle: System elements and other resources are available, accessible, and able to fulfill their design intent only for the time for
which they are needed.104

TSD-16: Least Privilege
Principle: Each system element is allocated privileges that are necessary to accomplish its specified functions but no more. 105

TSD-17: Least Sharing
Principle: System resources are shared among system elements only when necessary and among as few elements as possible. 106

TSD-18: Loss Margins
Principle: The system is designed to operate in a state space sufficiently distanced from the threshold at which loss occurs. 107

TSD-19: Mediated Access
Principle: All access to and operations on system elements are mediated. 108

TSD-20: Minimal Trusted Elements
Principle: A system has as few trusted system elements as practicable. 109

TSD-21: Minimize Detectability
Principle: The design of the system minimizes the detectability of the system as much as practicable. 110

TSD-22: Protective Defaults
Principle: The default configuration of the system provides maximum protection effectiveness. 111

98 NIST SP 800-160 Vol 1 Rev 1 Appendix E.9
99 NIST SP 800-160 Vol 1 Rev 1 Appendix E.10
100 NIST SP 800-160 Vol 1 Rev 1 Appendix E.11
101 NIST SP 800-160 Vol 1 Rev 1 Appendix E.12
102 NIST SP 800-160 Vol 1 Rev 1 Appendix E.13
103 NIST SP 800-160 Vol 1 Rev 1 Appendix E.14
104 NIST SP 800-160 Vol 1 Rev 1 Appendix E.15
105 NIST SP 800-160 Vol 1 Rev 1 Appendix E.16
106 NIST SP 800-160 Vol 1 Rev 1 Appendix E.17
107 NIST SP 800-160 Vol 1 Rev 1 Appendix E.18
108 NIST SP 800-160 Vol 1 Rev 1 Appendix E.19
109 NIST SP 800-160 Vol 1 Rev 1 Appendix E.20
110 NIST SP 800-160 Vol 1 Rev 1 Appendix E.21 | OWASP A01:2021
111 NIST SP 800-160 Vol 1 Rev 1 Appendix E.22 | OWASP A01:2021

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 25 of 41

TSD-23: Protective Failure
Principle: A failure of a system element neither results in an unacceptable loss nor invokes another loss scenario. 112

TSD-24: Protective Recovery
Principle: The recovery of a system element does not result in nor lead to unacceptable loss. 113

TSD-25: Reduced Complexity
Principle: The system design is as simple as practicable. 114

TSD-26: Redundancy
Principle: The system design delivers the required capability by replication of system functions or elements. 115

TSD-27: Self-Reliant Trustworthiness
Principle: The trustworthiness of a system element is achieved with minimal dependence on other elements. 116

TSD-28: Structured Decomposition and Composition
Principle: System complexity is managed through the structured decomposition of the system and the structured composition of the
constituent elements to deliver the required capability. 117

TSD-29: Substantiated Trustworthiness
Principle: System trustworthiness judgments are based on evidence that the criteria for trustworthiness have been satisfied. 118

TSD-30: Trustworthy System Control
Principle: The design for system control functions conforms to the properties of the generalized reference monitor. 119

112 NIST SP 800-160 Vol 1 Rev 1 Appendix E.23 | OWASP A01:2021
113 NIST SP 800-160 Vol 1 Rev 1 Appendix E.24
114 NIST SP 800-160 Vol 1 Rev 1 Appendix E.25 | OWASP A01:2021
115 NIST SP 800-160 Vol 1 Rev 1 Appendix E.26
116 NIST SP 800-160 Vol 1 Rev 1 Appendix E.27
117 NIST SP 800-160 Vol 1 Rev 1 Appendix E.28
118 NIST SP 800-160 Vol 1 Rev 1 Appendix E.29
119 NIST SP 800-160 Vol 1 Rev 1 Appendix E.30

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 26 of 41

PRACTITIONER-LEVEL: COMPLIANCE OBLIGATIONS FOR SOFTWARE SUPPLY CHAIN SECURITY (SSCS)
Executive Order (EO) 14028, Improving the Nation’s Cybersecurity, directs the National Institute of Standards and Technology (NIST)
to publish guidance on practices for software supply chain security. 120 EO 14028 Section 4e contains ten (10) subsections, each of
which specifies actions or outcomes for software producers, such as Commercial-Off-The-Shelf (COTS) product vendors,
Government-Off-The-Shelf (GOTS) software developers, contractors and other custom software developers.

EXECUTIVE ORDER (EO) 14028
EO 14028 emphasizes that “the security of software used by the Federal Government is vital to the Federal Government’s ability to
perform its critical functions,” and “there is a pressing need to implement more rigorous and predictable mechanisms for ensuring
that products function securely and as intended.” Accordingly, Secure Software Development Practices (SSDP) should be integrated
throughout software life cycles for three (3) reasons:

1. To reduce the number of vulnerabilities in released software;
2. To reduce the potential impact of the exploitation of undetected or unaddressed vulnerabilities; and
3. To address the root causes of vulnerabilities to prevent recurrences.

NIST SP 800-218, Secure Software Development Framework (SSDF), defines outcome-based SSDP for software producers to follow.

121
The following chart contains a mapping for each Section 4e item to the SSDF practices:

SSDF Practices Corresponding to EO 14028 Subsections

EO 14028
Subsection Subsection Summary SSDF Practice and Task Reference Numbers

4e(i) Have secure software development environments, including: [See rows below]
4e(i)(A) administratively separate build environments; PO.5.1
4e(i)(B) trust relationship auditing; PO.5.1
4e(i)(C) multi-factor, risk-based authentication and conditional access; PO.5.1, PO.5.2
4e(i)(D) minimized dependencies on enterprise products in development environments; PO.5.1
4e(i)(E) data encryption; and PO.5.2
4e(i)(F) operational monitoring and incident detection and response. PO.3.2, PO.3.3, PO.5.1, PO.5.2
4e(ii) Provide artifacts from 4e(i) upon request. PO.3.2, PO.3.3, PO.5.1, PO.5.2

4e(iii)
Maintain trusted source code supply chains. PO.3.1, PO.3.2, PO.5.1, PO.5.2,

PS.1.1, PS.2.1, PS.3.1, PW.4.1, PW.4.4

4e(iv)

Check software for vulnerabilities and remediate them. PO.4.1, PO.4.2, PS.1.1, PW.2.1,
PW.4.4, PW.5.1, PW.6.1, PW.6.2,
PW.7.1, PW.7.2, PW.8.2, PW.9.1,
PW.9.2, RV.1.1, RV.1.2, RV.2.1, RV.2.2, RV.3.3

4e(v)
Provide artifacts from 4e(iii) and 4e(iv) upon request and make a summary
description of risks assessed and mitigated publicly available.

PO.3.2, PO.3.3, PO.4.1, PO.4.2,
PO.5.1, PO.5.2, PW.1.2, PW.2.1, PW.7.2, PW.8.2,
RV.2.2

4e(vi)
Maintain provenance data for internal and 3rd party components. PO.1.3, PO.3.2, PO.5.1, PO.5.2,

PS.3.1, PS.3.2, PW.4.1, PW.4.4, RV.1.1, RV.1.2

4e(vii) Provide a software bill of materials (SBOM) for each product. PS.3.2

4e(viii) Participate in a vulnerability disclosure program. RV.1.1, RV.1.2, RV.1.3, RV.2.1, RV.2.2, RV.3.3

4e(ix)
Attest to conformity with secure software development practices. All practices and tasks consistent with a risk-

based approach

4e(x) Attest to the integrity and provenance of open- source software components. PS.2.1, PS.3.1, PS.3.2, PW.4.1, PW.4.4

120 Executive Order (EO) 14028, Improving the Nation’s Cybersecurity - https://www.federalregister.gov/documents/2021/05/17/2021-
10460/improving-the-nations-cybersecurity
121 NIST SP 800-218 v1.1 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 27 of 41

SOFTWARE PRODUCER OBLIGATIONS
NIST SP 800-218 addresses EO 14028 Section 4e from a software producer viewpoint. The software producers are the ones who
implement SSDF practices. EO 14028 Section 4k explains that federal agencies will need to comply with NIST guidelines. In this
context, federal agencies are software purchasers, not software producers, so additional guidance from the US Government is
needed to address EO 14028 Section 4e from a software purchaser viewpoint. However, when a federal agency (purchaser) acquires
software or a product containing software, the agency is required to receive attestation from the software producer that the
software’s development complies with US Government-specified secure software development practices.

It is expected that Federal agencies will request artifacts from the software producer that support its attestation of conformity with
the SSDP described in EO 14028 Section 4e subsections (i), (iii) and (iv), which are listed here:

(i) secure software development environments, including such actions as:
(A) using administratively separate build environments;
(B) auditing trust relationships;
(C) establishing multi-factor, risk-based authentication and conditional access across the enterprise;
(D) documenting and minimizing dependencies on enterprise products that are part of the environments used to develop,

build and edit software;
(E) employing encryption for data; and
(F) monitoring operations and alerts and responding to attempted and actual cyber incidents;

(iii) employing automated tools, or comparable processes, to maintain trusted source code supply chains, thereby ensuring the

integrity of the code;

(iv) employing automated tools, or comparable processes, that check for known and potential vulnerabilities and remediate

them, which shall operate regularly, or at a minimum prior to product, version, or update release.

SOFTWARE CONFORMITY ASSESSMENT
EO 14028 Section 4e uses several terms, including “conformity,” “attestation,” and “artifacts” so it is important to understand the
meaning of those terms according to definitions from existing standards and guidance:

 Conformity assessment is a “demonstration that specified requirements are fulfilled.” In the context of EO 14028 Section 4e,
the requirements are SSDP, so a conformity assessment is a demonstration that the software producer has followed SSDP
for its software. 122

 Attestation is the “issue of a statement, based on a decision, that fulfilment of specified requirements has been
demonstrated.” 123

o If the software producer self-attests that it conforms to SSDP through a Supplier’s Declaration of Conformity
(SDoC):

o If the software purchaser attests to the software producer’s conformity with secure software development
practices, this is known as second-party attestation.

o If an independent third-party attests to the software producer’s conformity with secure software development
practices, this is known as third-party attestation or certification.

 Artifacts are “a piece of evidence.” [adapted from NISTIR 7692] Evidence is “grounds for belief or disbelief; data on which to
base proof or to establish truth or falsehood.” [NIST SP 800-160 Vol. 1] Artifacts provide records of secure software
development practices:

o Low-level artifacts are generated manually, or by automated means, during software development and are
maintained by the software producer. Low-level artifacts include, but are not limited to:

 Threat models;
 Log entries;
 Source code files;
 Source code vulnerability scan reports;
 Testing results;
 Telemetry; and
 Risk-based mitigation decisions for a particular piece of software.

122 ISO/IEC 17000:2020 - https://www.iso.org/standard/73029.html
123 ISO/IEC 17000:2020 - https://www.iso.org/standard/73029.html

https://www.iso.org/standard/73029.html
https://www.iso.org/standard/73029.html

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 28 of 41

o High-level artifacts are generated by summarizing SSDP derived from the low-level artifacts. An example of a high-
level artifact is a publicly-accessible document describing the methodology, procedures and processes a software
producer uses its SSDP.

The following subsections of EO 14028 Section 4e use these terms:

(ii) generating and, when requested by a purchaser, providing artifacts that demonstrate conformance to the processes set
forth in subsection (e)(i) of this section;

(v) providing, when requested by a purchaser, artifacts of the execution of the tools and processes described in subsection
(e)(iii) and (iv) of this section and making publicly available summary information on completion of these actions, to include
a summary description of the risks assessed and mitigated;

(ix) attesting to conformity with secure software development practices.

In summary, when a Federal agency (purchaser) acquires software or a product containing software, the agency will likely require
attestation from the software producer that the software’s development complies with government-specified SSDP. The Federal
agency might also request artifacts from the software producer that support its attestation of conformity with the SSDP described in
EO 14028 Section 4e subsections (i), (iii) and (iv).

ATTESTING TO CONFORMITY WITH SECURE SOFTWARE DEVELOPMENT PRACTICES (SSDP)
NIST defined the following minimum recommendations for Federal agencies as they acquire software or a product containing
software. These recommendations are intended to assist Federal agencies and software producers in communicating clearly with
each other regarding secure software development artifacts, attestation and conformity:

1. Use the SSDF’s terminology and structure to organize communications about secure software development
requirements. This enables all software producers to use the same lexicon when attesting to conformity for federal
agencies. Software producers can map their secure development methodology to the SSDF’s secure software development
practices or associated informative references.

2. Require attestation to cover secure software development practices performed as part of processes and procedures
throughout the software life cycle. With the highly dynamic nature of software today, attesting to how things were and are
done on an ongoing basis (processes and procedures) is typically more valuable than attesting to how things were done for
a specific software release generated by one instance of those processes. This is especially true for post-release practices
such as vulnerability disclosure and response, where processes might not yet have been performed for the latest release.

3. Accept first-party attestation of conformity with SSDF practices unless a risk-based approach determines that second or
third-party attestation is required. First-party attestation is recommended for meeting the EO 14028 requirements. This is
consistent with the guidance in NIST SP 800-161 Rev. 1, which states in Section 3.1.2: “There are a variety of acceptable
validation and revalidation methods, such as requisite certifications, site visits, third-party assessment, or self-attestation.
The type and rigor of the required methods should be commensurate to the criticality of the service or product being
acquired and the corresponding assurance requirements.”

4. When requesting artifacts of conformance, request high-level artifacts. The software producer should be able to trace the
practices summarized in the high-level artifacts to the corresponding low-level artifacts that are generated by those
practices. Asking for low-level artifacts for a particular software release is not recommended for meeting the requirements
of EO 14028, but may be needed to meet other agency requirements. Reasons for avoiding low-level artifacts include the
following:
 Low-level artifacts provide a snapshot in time of only a small aspect of secure software development, whereas high-

level artifacts can provide a big-picture view of how secure software development is performed.
 Artifacts should address the needs of the audience receiving them, thus providing the necessary information in a

usable format for that audience. Understanding low-level artifacts requires the agency to expend considerable
technical resources and expertise in analyzing them and determining how to consider them within the context of the
broader secure software development practices.

 Low-level artifacts often contain intellectual property or other proprietary information, or details that attackers could
use for hostile purposes, so accepting low-level artifacts gives the agency additional sensitive information to protect.
These minimum recommendations apply to attestation for all software within the scope of this guidance procured by
federal agencies and they should be part of each agency’s processes. The recommendations are not intended to
replace more stringent requirements for secure software development that federal agencies may have.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 29 of 41

Note: These minimum practices will not be sufficient in some cases. For example, a Federal agency may need greater visibility into
the practices for a particular product so that it can better understand how the product would affect the agency’s cybersecurity risk.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 30 of 41

ARCHITECT-LEVEL: DESIGN FOR CYBER RESILIENCY
The SCA supports the strategic cyber resiliency design principles that established by NIST SP 800-160, Vol 2, Rev 1: 124

 Focus on common critical assets;
 Support agility and architect for adaptability;
 Reduce attack surfaces;
 Assume compromised resources; and
 Expect adversaries to evolve.

NIST SP 800-160, Vol 2, Rev 1125, presents a “cyber resiliency engineering framework” to aid in understanding and applying cyber
resiliency in the system life cycle. Cyber resiliency engineering intends to architect, design, develop, maintain and sustain the
trustworthiness of systems with the capability to anticipate, withstand, recover from and adapt to adverse conditions, stresses,
attacks, or compromises that use or are enabled by cyber resources. From a risk management perspective, cyber resiliency is
intended to reduce the mission, business, organizational, or sector risk of depending on cyber resources.

NIST illustrates the types of situations in which an adversary can maintain a long-term presence or persistence in a system without
attacking the system via cyberspace:

 Compromising the pre-execution environment of a system through a hardware or software implant (e.g., compromise of
the firmware or microcode of a system element, such as a network switch or a router that activates before initialization in
the system's environment of operation). This is extremely difficult to detect and can result in compromise of the entire
environment;

 Compromising the software development toolchain (e.g., compilers, linkers, interpreters, continuous integration tools, code
repositories). This allows malicious code to be inserted by the adversary without modifying the source code or without the
knowledge of the software developers; and

 Compromising a semiconductor product or process (e.g., maliciously altering the Hardware Description Language (HDL) of a
microprocessor, a Field-Programmable Gate Array (FPGA), a Digital Signal Processor (DSP) or an Application-Specific
Integrated Circuit (ASIC)).

Cyber resiliency constructs, including goals, objectives, techniques, implementation approaches and design principles, enable
systems engineers to express cyber resiliency concepts and the relationships among them. The cyber resiliency constructs also relate
to risk management. That relationship leads systems engineers to analyze cyber resiliency solutions in terms of potential effects on
risk and on specific threat events or types of malicious cyber activities. The selection and relative priority of these cyber resiliency
constructs is determined by the organization’s strategy for managing the risks of depending on systems, which include cyber
resources—in particular, by the organization’s risk framing.

The relative priority of the cyber resiliency goals and objectives and relevance of the cyber resiliency design principles are
determined by the risk management strategy of the organization that takes into consideration the concerns of, constraints on and
equities of all stakeholders (including those who are not part of the organization). The risk management strategy for the
organization is translated into specific interpretations and prioritizations of cyber resiliency goals and objectives, which guide and
inform trade-offs among different forms of risk mitigation.

CYBER RESILIENCY CONSTRUCTS
Cyber resiliency is framed according to:

 Goals;
 Objectives; and
 Strategic Design Principles.

Goal
A high-level statement supporting (or focusing on) one aspect (e.g., anticipate, withstand, recover, adapt) in the definition of cyber
resiliency.

124 NIST SP 800-160 Vol 2 Rev 1
125 NIST SP 800-160 Vol 2 Rev 1

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 31 of 41

Objective
A high-level statement (designed to be restated in system-specific and stakeholder-specific terms) of what a system must achieve in
its operational environment and throughout its life cycle to meet stakeholder needs for mission assurance and resilient security. The
objectives are more specific than goals and more relatable to threats.

Strategic Design Principles
A high-level statement that reflects an aspect of the risk management strategy that informs systems security engineering practices
for an organization, mission, or system.

Strategic design principles are driven by an organization’s risk management strategy and, in particular, by its risk framing. Risk
framing may include assumptions about the threats the organization should be prepared for, the constraints on risk management
decision-making (including which risk response alternatives are irrelevant) and organizational priorities and trade-offs.

Strategic design principles:

 Focus on common critical assets;
 Support agility and architect for adaptability;
 Reduce attack surfaces;
 Assume compromised resource; and
 Expect adversaries to evolve.

CYBER RESILIENCY GOALS
The goals associated with cyber resiliency are:

 Anticipate;
 Withstand;
 Recover;
 Adapt;
 Understand;
 Transform; and
 Re-Architect.

These goals can be further decomposed into sub-objectives and capabilities.

CYBER RESILIENCY OBJECTIVES
Cyber resiliency objectives are specific statements of what a system is intended to achieve in its operational environment and
throughout its life cycle to meet stakeholder needs for mission assurance and resilient security.126 Cyber resiliency objectives:

 Support interpretation;
 Facilitate prioritization and assessment; and
 Enable development of questions such as:

o What does each cyber resiliency objective mean in the context of the organization and the mission or business
process that the system is intended to support?

o Which cyber resiliency objectives are most important to a given stakeholder?
o To what degree can each cyber resiliency objective be achieved?
o How quickly and cost-effectively can each cyber resiliency objective be achieved?
o With what degree of confidence or trust can each cyber resiliency objective be achieved?

The five (5) objectives of cyber resiliency are: 127

1. Prevent or Avoid. Preclude the successful execution of an attack or the realization of adverse conditions.
2. Prepare. Maintain a set of realistic courses of action that address predicted or anticipated adversity.
3. Continue. Maximize the duration and viability of essential mission or business functions during adversity.
4. Constrain. Limit damage from adversity.
5. Reconstitute. Restore as much mission or business functionality as possible after adversity.

126 NIST SP 800-160 Vol 2 Rev 1 Appendix D
127 NIST SP 800-160 Vol 2 Rev 1 Table 3

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 32 of 41

RESILIENT & SECURE DEVELOPMENT LIFECYCLE (RSDL) STAGES
The six (6) phases of the Resilient & Secure Development Lifecycle (RSDL) include:

(1) Concept
(2) Development
(3) Production
(4) Utilization
(5) Support
(6) Retirement

Concept

 Prioritize and tailor objectives.
 Prioritize design principles and align with other disciplines.
 Limit the set of techniques and approaches to use in solutions.

Development

 Apply design principles to analyze and shape architecture and design.
 Use techniques and approaches to define alternative solutions.
 Develop capabilities to achieve the Prevent/Avoid, Continue, Constrain, Reconstitute and Understand objectives.

Production

 Implement and evaluate the effectiveness of cyber resiliency solutions.
 Provide resources (or ensure that resources will be provided) to achieve the Prepare objective.

Utilization

 Monitor the effectiveness of cyber resiliency solutions using capabilities to achieve Understand and Prepare objectives.
 Reprioritize and tailor objectives as needed and adapt mission, business, and/or security processes to address

environmental changes (Transform objective).

Support

 Revisit the prioritization and tailoring of objectives; use the results of monitoring to identify new or modified requirements.
 Revisit constraints on techniques and approaches.
 Modify or upgrade capabilities consistent with changes as noted (Re- Architect objective).

Retirement

 Prioritize and tailor objectives for the environment of operation.
 Ensure that disposal processes enable those objectives to be achieved, modifying or upgrading capabilities of other systems

as necessary (Re- Architect objective).

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 33 of 41

ARCHITECT-LEVEL: TRUSTWORTHY SECURE DESIGN (TSD)
Trustworthy Secure Design (TSD) is a means to optimally satisfy the requirements that form the basis for achieving system security
objectives across competing and conflicting stakeholder capability needs, concerns and constraints. 128

DESIGN APPROACH FOR TRUSTWORTHY SYSTEMS129
The design approach for engineering trustworthy secure systems is intended to establish and maintain the ability to deliver system
capabilities at an acceptable level of performance while minimizing the occurrence and extent of loss. The approach provides a
system structure for optimal employment of the tactical engineered features and devices.

The system design must provide the intended behaviors and outcomes, avoid the unintended behaviors and outcomes, prevent loss
and limit loss when it occurs. A trustworthy secure design includes a margin and a situational awareness capability to account for the
unknowns and uncertainty inherent in the system and its operational environment, as well as related adversity.

A trustworthy secure design includes a margin and a situational awareness capability to account for the unknowns and uncertainty
inherent in the system and its operational environment, as well as related adversity. The design approach includes the following
elements:

 Define the intended behaviors and outcomes for the system;
 Identify the system states and conditions that reflect the intended behaviors and outcomes;
 Identify the system states and conditions that potentially lead to loss in the system; and
 Engineer to prevent loss to the extent practicable (preferred) and limit the loss that does occur (where, when and to the

extent necessary and practicable).

DESIGN FOR BEHAVIORS & OUTCOMES130
A system is to deliver the required capability at a specified level of performance. The system capability is reflected in its behaviors
and outcomes. The design goal is to provide capabilities that are authorized and intended. However, the system can also deliver a
capability that is not authorized or intended. This possibility exists due to the concept of emergence.

Emergence refers to the behaviors and outcomes that result from how individual system elements compose to form the system as a
whole. That is, the behavior and outcomes produced by the system are not those of the individual system elements that comprise
the system. Rather, the emergent system behavior and outcomes, or properties, result from the composition of multiple system
elements

SECURITY DESIGN ORDER OF PRECEDENCE (SECDOP) 131
The security design order of precedence (SecDOP) is part of a design approach that uses passive architectural features to provide the
structure for the employment of engineered features and devices. SecDOP reflects a design goal to eliminate the design basis for
loss potential.

Using a principled and assured engineering approach, the SecDOP eliminates susceptibility, hazard and vulnerability to the extent
practicable, thereby eliminating the associated risk. For those cases in which susceptibility, hazard, or vulnerability cannot be
eliminated, the SecDOP reduces the loss potential (e.g., occurrence, impact) to the lowest acceptable level within the constraints of
cost, schedule and performance. The SecDOP identifies the design options and lists those options in order of decreasing
effectiveness, thus enabling a maximized return on investment.

The SecDOP acts as follows:

1. Eliminate the potential for loss through design selection.
2. Reduce the potential for loss through design alteration.
3. Incorporate engineered features or devices to control the potential for loss.

a. Mandatory security features and devices
b. Function-specific features and devices

4. Provide visibility and feedback to external entities.

128 NIST SP 800-160 Vol 1 Rev 1 Appendix D
129 NIST SP 800-160 Vol 1 Rev 1 Appendix D.1
130 NIST SP 800-160 Vol 1 Rev 1 Appendix D.2
131 NIST SP 800-160 Vol 1 Rev 1 Appendix D.3

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 34 of 41

5. Incorporate signage, procedures, training and proper equipment.

FUNCTIONAL DESIGN CONSIDERATIONS132
Protection control functions may be characterized and analyzed by using the following designations:

 Protection Control Decision Functions. These functions make authorization decisions or take other actions for protection
control enforcement functions. For example, a protection control decision function is a function that decides to grant or
deny access to a resource based on a request, possibly from a protection control enforcement function.

 Protection Control Enforcement Functions. These functions enforce a constraint to ensure that the system or system
element exhibits only authorized and intended behaviors or outcomes. For example, a protection control enforcement
function enforces a decision to grant or deny access to a resource.

 Protection Control Infrastructure Functions. These functions support and help protection control enforcement and control
decision functions fulfil their purposes. The functions also provide data or services or perform operations upon which
protection control enforcement and decision functions depend. For example, a protection control infrastructure function
includes secure storage, secure communication and anomaly detection mechanisms.

Mechanism Design Criteria
To effectively achieve the objectives of trustworthy secure design, mechanisms must satisfy four essential design criteria.

 Non-Bypassable. The mechanism must not be circumventable.
 Evaluatable. The mechanism must be sufficiently small and simple enough to be assessed to produce adequate confidence

in the protection provided, the constraint (or control objective) enforced and the correct implementation of the
mechanism. The assessment includes the analysis and testing needed.

 Always Invoked. The protection provided by a mechanism or feature that is not always invoked is not continuous and
therefore, a loss may occur while the mechanism or feature is suspended or turned off.

 Tamper Proof. The mechanism or feature and the data that the mechanism or feature depends on cannot be modified in an
unauthorized manner.

Protective Failure
The failure of a security function is of special concern, given the need for security functions to always be invoked and operating
correctly. Consequently, failure analyses must be performed during system design to determine the impacts of function failure on
the system capabilities, including the protection capability relative to the resulting consequences of such failure and the needed
assurance of the protection capability.

Failure analyses consider the assets that may be impacted by security function failure and the associated loss consequences. Failure
analyses also consider the function allocation to system elements and the way the system function and element combination
interacts with other system function and element combinations, independent of specific events and conditions that might lead to
the failure. The outcomes of the security function failure analyses also drive assurance levels and objectives, as well as the fidelity
and rigor of architecture, design and implementation methods employed to achieve those objectives.

132 NIST SP 800-160 Vol 1 Rev 1 Appendix D.4

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 35 of 41

ARCHITECT-LEVEL: SECURE DEVELOPMENT LIFECYCLE (SDL)
There is a multitude of considerations and contributions that build upon traditional System/Software Development Lifecycle (SDLC)
processes to produce the behaviors and outcomes that are necessary to achieve trustworthy secure systems.133

Per ISO 15288 and NIST SP 800-160 Vol 1 Rev 1, each system life cycle process description has the following sections:

 Life Cycle Purpose: Describes the goals of performing the process [per ISO 15288].
 Security Purpose: Establishes what the process achieves from the security standpoint.
 Security Outcomes: Expresses the security-related observable results expected from the successful performance of the

process and the data generated by the process.
 Security Activities: Provides a set of cohesive security-related tasks that support achievement of the security outcomes for

the process. The tasks are accomplished cooperatively within and across various roles of the organization, inclusive of
systems security engineering. While this publication focuses on the scope and responsibility of systems security
engineering, it is not the case that all aspects of every task are fulfilled by systems security engineering.

SDL PROCESSES
These thirty (30) NIST SP 800-160 Vol1 Rev 1 Secure Development Lifecycle (SDL) processes are organized into four (4) groups:

Technical Processes

 Business or Mission Analysis (BA) 134
 Stakeholder Needs and Requirements Definition (SN) 135
 System Requirements Definition (SR) 136
 System Architecture Definition (AR) 137
 Design Definition (DE) 138
 System Analysis (SA) 139
 Implementation (IP) 140
 Integration (IN) 141
 Verification (VE) 142
 Transition (TR) 143
 Validation (VA) 144
 Operation (OP) 145
 Maintenance (MA) 146
 Disposal (DS) 147

Technical Management Processes

 Project Planning (PL) 148
 Project Assessment and Control (PA) 149
 Decision Management (DM) 150

133 NIST SP 800-160 Vol 1 Rev 1
134 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.1
135 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.2
136 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.3
137 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.4
138 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.5
139 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.6
140 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.7
141 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.8
142 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.9
143 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.10
144 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.11
145 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.12
146 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.13
147 NIST SP 800-160 Vol 1 Rev 1 – Appendix H.14
148 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.1
149 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.2
150 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.3

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 36 of 41

 Risk Management (RM) 151
 Configuration Management (CM) 152
 Information Management (IM) 153
 Measurement (MS) 154
 Quality Assurance (QA) 155

Organizational Project Enabling Processes

 Life Cycle Model Management (LM) 156
 Infrastructure Management (IF) 157
 Portfolio Management (PM) 158
 Human Resource Management (HR) 159
 Quality Management (QM) 160
 Knowledge Management (KM) 161

Agreement Process

 Acquisition (AQ) 162
 Supply (SP) 163

MICROSOFT OPERATIONAL SECURITY ASSURANCE (OSA)
An alternative to ISO 15288’s approach to SDL, Microsoft’s Operational Security Assurance (OSA) incorporates the knowledge gained
through capabilities that are unique to Microsoft, including the Microsoft Security Development Lifecycle (SDL), the Microsoft
Security Response Center (MSRC) program, a deep awareness of the cybersecurity threat landscape and data from industry standard
tools. OSA combines this knowledge with the experience of running millions of servers in data centers globally that deliver massive-
scale online services to customers and enterprises.

Microsoft’s OSA contains the following eleven (11) practices: 164

OSA Practice 1: Provide Training
Security is everyone’s job. Ensuring everyone understands the attacker’s perspective, their goals and the art of the possible will help
capture the attention of everyone and raise the collective knowledge bar. Developers, service engineers and product managers must
understand security basics and know how to build security into software and services to make products more secure while still
addressing business needs and delivering user value.

Effective training will complement and re-enforce security policies, OSA practices, standards and security requirements and be
guided by insights derived through data or newly available technical capabilities.

OSA Practice 2: Use Multi-Factor Authentication
Passwords can be stolen and identities compromised. Requiring a second factor in addition to a password immediately improves
security. Further, authenticating the identity of a user or administrator and verifying their authorization to perform an action are

151 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.4
152 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.5
153 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.6
154 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.7
155 NIST SP 800-160 Vol 1 Rev 1 – Appendix I.8
156 NIST SP 800-160 Vol 1 Rev 1 – Appendix J.1
157 NIST SP 800-160 Vol 1 Rev 1 – Appendix J.2
158 NIST SP 800-160 Vol 1 Rev 1 – Appendix J.3
159 NIST SP 800-160 Vol 1 Rev 1 – Appendix J.4
160 NIST SP 800-160 Vol 1 Rev 1 – Appendix J.5
161 NIST SP 800-160 Vol 1 Rev 1 – Appendix J.6
162 NIST SP 800-160 Vol 1 Rev 1 – Appendix K.1
163 NIST SP 800-160 Vol 1 Rev 1 – Appendix K.2
164 Microsoft OSA - https://www.microsoft.com/en-us/securityengineering/osa/practices

https://www.microsoft.com/en-us/securityengineering/osa/practices

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 37 of 41

foundational controls that other security controls are built upon. It’s beneficial to standardize on an approach to both authentication
and authorization.

OSA Practice 3: Enforce Least Privilege
It’s important to restrict and minimize the number of people in privileged roles who have access to secured information or
resources. This reduces the chance of a malicious user getting that access, or an authorized user inadvertently compromising a
sensitive resource. However, users still need to carry out privileged operations on a service and there is a need to understand what
those operations are and to separate those roles such that there’s no easy opportunity for privilege escalation. The principle of “just
enough administration” should be adopted to constrain the elevated privilege only to those functions the administrator requires to
complete the task at hand and only on a "just-in-time" (JIT) basis and only for the minimum practical period.

The use of Privileged Access Workstations (PAWs) also helps protect privileged users from internet attacks and threat vectors by
providing a dedicated machine for sensitive tacks and separating these sensitive tasks and accounts from the daily use workstations.

OSA Practice 4: Protect Secrets
Encrypt and store application secrets and eliminate the need to include secrets and other sensitive configuration information in code
or configuration files of the code. Never store passwords or other sensitive data in source code or configuration files or in plaintext
files (documents, spreadsheets) stored in unprotected locations. Production secrets should not be used for development or testing.

OSA Practice 5: Minimize Attack Surface
Minimize the number of features that can be attacked by a malicious party. A defense-in-depth approach should be adopted and the
attack surface should be minimized at every level of the stack, including limiting and locking down the network ports available,
implementing baseline server role configurations and restricting the applications a server is allowed to run.

OSA Practice 6: Encrypt Data in Transit and at Rest
With the rise of mobile and cloud computing, it’s critically important to ensure all data—including security-sensitive information and
management and control data—is protected from unintended disclosure or alteration when it’s being transmitted or stored.
Encryption is typically used to achieve this. In the operational world, only use industry-vetted encryption libraries and only use
strong versions of the encryption protocol. Also, be sure you understand the protections an encryption solution provides, especially
when encrypting stored data.

OSA Practice 7: Implement Security Monitoring
It is critically important to be able to detect, respond to and recover from attacks. Well-designed application, system and security log
files are the fundamental data sources that inform automated security information and event management (SIEM) systems alerting
and that support forensic analysis in the event of an incident.

OSA Practice 8: Implement A Security Update Strategy
Attackers often exploit previously discovered vulnerabilities for which updates have been published, before the systems they affect
are patched. To help address this, all systems must be continuously monitored and updated with the latest security updates. For
operating system and software packages, only use currently supported software versions and ideally the latest versions. In addition,
to help detect and prevent malware infections, servers should be required to run anti-malware software which will block and
remediate potential infections before they can cause damage.

OSA Practice 9: Protect Against DDOS Attacks
Distributed Denial of Service (DDoS) attacks are some of the largest availability and security concerns facing cloud applications,
because any endpoint that's publicly reachable over the internet can be targeted. To address this, at a minimum traffic must be
continually monitored and real-time mitigations must be provided for common network-level attacks. However, as DDoS attacks
become more sophisticated and targeted, it may also be necessary to provide DDoS mitigations to protocol and application layer
attacks.

OSA Practice 10: Validate the Configuration of Web Applications and Sites
Website and application scanning is a critical part of maintaining a highly secure operations environment for online services.
Regularly validate that websites and web applications are configured optimally to prevent common web attacks and to use secure
versions of transport protocols and have opted into security-relevant options. Scans using authenticated credentials will typically
produce more valuable results and any issues found should be remediated immediately.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 38 of 41

OSA Practice 11: Perform Penetration Testing
The objective of the penetration test is to uncover potential vulnerabilities resulting from coding errors, system configuration faults,
or other operational deployment weaknesses. It is performed by a dedicated “red team” of security experts who simulate real-world
attacks at the network, platform and application layers—challenging the ability of cloud services “blue team”, a dedicated team of
security responders, to detect, protect against and recover from security breaches. Every Red Team breach is followed by full
disclosure between the Red Team and Blue Team to identify gaps, address findings and significantly improve breach response.

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 39 of 41

GLOSSARY: ACRONYMS & DEFINITIONS

ACRONYMS
Application-Specific Integrated Circuit (ASIC)
Applications, Services, and Processes (ASP)
Body of Knowledge (BoK)
Certificate of Competence (CoC)
Certified SCA Architect (CSCAA)
Certified SCA Practitioner (CSCAP)
Commercial-Off-The-Shelf (COTS)
Common Weakness Enumeration (CWE)
Computerized Numerical Control (CNC)
Confidentiality, Integrity, Availability & Safety (CIAS)
Cyber-Physical Systems (CPS)
Defense Acquisition Regulations System (DFARS)
Developing Security & Privacy by Design (DSPD)
Development & Operations (DevOps)
Digital Signal Processor (DSP)
Discretionary Security Requirements (DSR)
Distributed Denial of Service (DDoS)
Enterprise Information Technology (EIT)
Executive Order (EO)
Federal Acquisition Regulation (FAR)
Field-Programmable Gate Array (FPGA)
Governance, Risk & Compliance (GRC)
Government-Off-The-Shelf (GOTS)
High Value Asset (HVA)
High Value Target (HVT)
Individual Contributors (IC)
Industrial Control Systems (ICS)
Integrated Controls Management (ICM)
International Organization for Standardization (ISO)
Just In Time (JIT)
Microsoft Security Response Center (MSRC)
Minimum Compliance Criteria (MCC)
Minimum Security Requirements (MSR)
Minimum Viable Product (MVP)
National Institute of Standards and Technology (NIST)
Open Web Application Security Project (OWASP)
Operating Systems (OS)
Operational Security Assurance (OSA)
Operational Technology (OT)
Privileged Access Workstations (PAW)
Programmable Logic Controllers (PLCs)
Secure Code Alliance (SCA)
Secure Development Lifecycle (SDL)
Secure Software Development Practices (SSDP)
Security, Development & Operations (SecDevOps)
Software Bill of Materials (SBOM)
Software/System Development Life Cycle (SDLC)
Supervisory Control and Data Acquisition (SCADA)
Supplier’s Declaration of Conformity (SDoC)
Trustworthy Secure Design (TSD)

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 40 of 41

DEFINITIONS
The SCA-BoK recognizes two (2) sources for authoritative reference documents to define common cybersecurity and data protection
terms:

 The National Institute of Standards and Technology (NIST) IR 7298, Glossary of Key Cybersecurity Terms, is the approved
reference document used to define common digital security terms;165 and

 NIST Glossary.166

Security Requirements and Controls
The term control can be applied to a variety of contexts and can serve multiple purposes. When used in the security context, a
security control can be a mechanism (e.g., a safeguard or countermeasure) designed to address protection needs that are specified
by a set of security requirements.

 Controls are defined as the power to make decisions about how something is managed or how something is done; the
ability to direct the actions of someone or something; an action, method or law that limits; or a device or mechanism used
to regulate or guide the operation of a machine, apparatus or system.

165 NIST IR 7298 - https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf
166 NIST Glossary - https://csrc.nist.gov/glossary

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf
https://csrc.nist.gov/glossary

© Secure Code Alliance, All Rights Reserved. Version 2023.1 Page 41 of 41

NORMATIVE REFERENCES

 Building Security In Maturity Model (BSIMM)167

 Cloud Security Alliance (CSA) – Top Threats to Cloud Computing: Egregious Eleven168

 Common Weakness Enumeration (CWE): Software Development169

 Integrated Controls Management (ICM)170

 Dark Reading – NIST Misses Opportunity With New ‘Minimum Standard’ for Software Security Testing171

 DevOps.com172

 Executive Order 14028– Improving the Nation’s Cybersecurity 173

 Executive Order 14028, Improving the Nation’s Cybersecurity: NIST’s Responsibilities under the Executive Order174

 Minimum Viable Secure Product (MVSP)175

 Mitigating the Risk of Software Vulnerabilities by Adopting a Secure Software Development Framework (SSDF)176

 NIST SP 800-160 Vol. 1 – Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering

of Trustworthy Secure Systems177

 NIST SP 800-218 – Secure Software Development Framework (SSDF) Version 1:1 Recommendations for Mitigating the Risk if

Software Vulnerabilities178

 Open Web Application Security Project (OWASP) - Security Assurance Maturity Model (SAMM)179

 State of Alabama – Information Technology Guideline 661G2-00: Security Engineering Principles180

 Secure Controls Framework (SCF)181

 Supply Chain Risk Management (SCRM)182

167 https://www.bsimm.com
168 https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-egregious-eleven
169 https://cwe.mitre.org/data/definitions/699.html
170 https://www.complianceforge.com/reasons-to-buy/integrated-controls-management
171 https://www.darkreading.com/edge-articles/nist-misses-opportunity-with-new-minimum-standard-for-software-security-testing
172 https://devops.com/category/blogs/devsecops
173 https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
174 https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity
175 https://mvsp.dev/mvsp.en/index.html
176 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf
177 https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
178 https://csrc.nist.gov/publications/detail/sp/800-218/final
179 https://www.opensamm.org
180 https://oit.alabama.gov/wp-content/uploads/2017/09/Guideline_661G2_Security_Engineering_Principles.pdf
181 https://www.securecontrolsframework.com
182 https://www.metascrm.com

https://www.bsimm.com/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-egregious-eleven
https://cwe.mitre.org/data/definitions/699.html
https://www.complianceforge.com/reasons-to-buy/integrated-controls-management
https://www.darkreading.com/edge-articles/nist-misses-opportunity-with-new-minimum-standard-for-software-security-testing
https://devops.com/category/blogs/devsecops
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity
https://mvsp.dev/mvsp.en/index.html
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04232020.pdf
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.opensamm.org/
https://oit.alabama.gov/wp-content/uploads/2017/09/Guideline_661G2_Security_Engineering_Principles.pdf
https://www.securecontrolsframework.com/
https://www.metascrm.com/

	Executive Summary
	About The Secure Code Alliance (SCA)
	SCA Body of Knowledge (SCA-BoK)
	Secure Software Development Framework (SSDF)
	Mission
	Vision
	Strategy
	Developing Security & Privacy by Design (DSPD) Conformity Assessment
	Recall
	Application
	Analysis

	Competency Expectations
	Practitioner Role - Certified SCA Practitioner (CSCAP)
	Architect Role - Certified SCA Architect (CSCAA)

	Practitioner-Level: Understanding The Role of Security Mechanisms
	Adequate Security
	Secure Systems
	Stakeholder Security Requirements
	System Security Requirements

	System of Systems Mindset
	SecDevOps
	Avoiding Siloes
	GRC Frames SecDevOps Controls
	Compliant vs Secure

	Practitioner-Level: Secure Software Development Practices (SSDP)
	Domain 1: Prepare The Organization (PO)
	Practice PO.1: Define Security Requirements for Software Development
	SSDP Task PO.1.1
	SSDP Task PO.1.2
	SSDP Task PO.1.3

	Practice PO.2: Implement Roles and Responsibilities
	SSDP Task PO.2.1
	SSDP Task PO.2.2
	SSDP Task PO.2.3

	Practice PO.3: Implement Supporting Toolchains
	SSDP Task PO.3.1
	SSDP Task PO.3.2
	SSDP Task PO.3.3

	Practice PO.4: Define and Use Criteria for Software Security Checks
	SSDP Task PO.4.1
	SSDP Task PO.4.2

	Practice PO.5: Implement and Maintain Secure Environments for Software Development
	SSDP Task PO.5.1
	SSDP Task PO.5.2

	Domain 2: Protect Software (PS)
	Practice PS.1: Protect All Forms of Code from Unauthorized Access and Tampering
	SSDP Task PS.1.1

	Practice PS.2: Provide a Mechanism for Verifying Software Release Integrity
	SSDP Task PS.2.1

	Practice PS.3: Archive and Protect Each Software Release
	SSDP Task PS.3.1
	SSDP Task PS.3.2

	Domain 3: Produce Well-Secured Software (PW)
	Practice PW.1: Design Software to Meet Security Requirements and Mitigate Security Risks
	SSDP Task PW.1.1
	SSDP Task PW.1.2
	SSDP Task PW.1.3

	Practice PW.2: Review the Software Design to Verify Compliance with Security Requirements and Risk Information
	SSDP Task PW.2.1

	Practice PW.3: Verify Third-Party Software Complies with Security Requirements
	Practice PW.4: Reuse Existing, Well-Secured Software When Feasible Instead of Duplicating Functionality
	SSDP Task PW.4.1
	SSDP Task PW.4.2
	SSDP Task PW.4.3
	SSDP Task PW.4.4
	SSDP Task PW.4.5

	Practice PW.5: Create Source Code by Adhering to Secure Coding Practices
	SSDP Task PW.5.1
	SSDP Task PW.5.2

	Practice PW.6: Configure the Compilation, Interpreter and Build Processes to Improve Executable Security
	SSDP Task PW.6.1
	SSDP Task PW.6.2

	Practice PW.7: Review and/or Analyze Human-Readable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements
	SSDP Task PW.7.1
	SSDP Task PW.7.2

	Practice PW.8: Test Executable Code to Identify Vulnerabilities and Verify Compliance with Security Requirements
	SSDP Task PW.8.1
	SSDP Task PW.8.2

	Practice PW.9: Configure Software to Have Secure Settings by Default
	SSDP Task PW.9.1
	SSDP Task PW.9.2

	Domain 4: Respond to Vulnerabilities (RV)
	Practice RV.1: Identify and Confirm Vulnerabilities on an Ongoing Basis
	SSDP Task RV.1.1
	SSDP Task RV.1.2
	SSDP Task RV.1.3

	Practice RV.2: Assess, Prioritize and Remediate Vulnerabilities
	SSDP Task RV.2.1
	SSDP Task RV.2.2

	Practice RV.3: Analyze Vulnerabilities to Identify Their Root Causes
	SSDP Task RV.3.1
	SSDP Task RV.3.2
	SSDP Task RV.3.3
	SSDP Task RV.3.4

	Practitioner-Level: Trustworthy Secure Design Principles & Concepts
	Application of Design Principles To Commercial Products
	Trustworthiness Design Principles
	TSD-1: Anomaly Detection
	TSD-2: Clear Abstractions
	TSD-3: Commensurate Protection
	TSD-4: Commensurate Response
	TSD-5: Commensurate Rigor
	TSD-6: Commensurate Trustworthiness
	TSD-7: Compositional Trustworthiness
	TSD-8: Continuous Protection
	TSD-9: Defense In Depth
	TSD-10: Distributed Privilege
	TSD-11: Diversity (Dynamicity)
	TSD-12: Domain Separation
	TSD-13: Hierarchical Protection
	TSD-14: Least Functionality
	TSD-15: Least Persistence
	TSD-16: Least Privilege
	TSD-17: Least Sharing
	TSD-18: Loss Margins
	TSD-19: Mediated Access
	TSD-20: Minimal Trusted Elements
	TSD-21: Minimize Detectability
	TSD-22: Protective Defaults
	TSD-23: Protective Failure
	TSD-24: Protective Recovery
	TSD-25: Reduced Complexity
	TSD-26: Redundancy
	TSD-27: Self-Reliant Trustworthiness
	TSD-28: Structured Decomposition and Composition
	TSD-29: Substantiated Trustworthiness
	TSD-30: Trustworthy System Control

	Practitioner-Level: Compliance Obligations For Software Supply Chain Security (SSCS)
	Executive Order (EO) 14028
	Software Producer Obligations
	Software Conformity Assessment
	Attesting to Conformity with Secure Software Development Practices (SSDP)

	Architect-Level: Design For Cyber Resiliency
	Cyber Resiliency Constructs
	Goal
	Objective
	Strategic Design Principles

	Cyber Resiliency Goals
	Cyber Resiliency Objectives
	Resilient & Secure Development Lifecycle (RSDL) Stages
	Concept
	Development
	Production
	Utilization
	Support
	Retirement

	Architect-Level: Trustworthy Secure Design (TSD)
	Design Approach For Trustworthy Systems128F
	Design For Behaviors & Outcomes129F
	Security Design Order of Precedence (SecDOP) 130F
	Functional Design Considerations131F
	Mechanism Design Criteria
	Protective Failure

	Architect-Level: Secure Development Lifecycle (SDL)
	SDL Processes
	Technical Processes
	Technical Management Processes
	Organizational Project Enabling Processes
	Agreement Process

	Microsoft Operational Security Assurance (OSA)
	OSA Practice 1: Provide Training
	OSA Practice 2: Use Multi-Factor Authentication
	OSA Practice 3: Enforce Least Privilege
	OSA Practice 4: Protect Secrets
	OSA Practice 5: Minimize Attack Surface
	OSA Practice 6: Encrypt Data in Transit and at Rest
	OSA Practice 7: Implement Security Monitoring
	OSA Practice 8: Implement A Security Update Strategy
	OSA Practice 9: Protect Against DDOS Attacks
	OSA Practice 10: Validate the Configuration of Web Applications and Sites
	OSA Practice 11: Perform Penetration Testing

	Glossary: Acronyms & Definitions
	Acronyms
	Definitions

	Normative References

